Providence Salumu Write You a Haskell ( Stephen Diehl )

\[\newcommand{\andalso}{\quad\quad} \newcommand{\infabbrev}[2]{\infax{#1 \quad\eqdef\quad #2}} \newcommand{\infrule}[2]{\displaystyle \dfrac{#1}{#2}} \newcommand{\ar}{\rightarrow} \newcommand{\Int}{\mathtt{Int}} \newcommand{\Bool}{\mathtt{Bool}} \newcommand{\becomes}{\Downarrow} \newcommand{\trule}[1]{(\textbf{#1})} \newcommand{\FV}[1]{\mathtt{fv}(#1)} \newcommand{\FTV}[1]{\mathtt{ftv}(#1)} \newcommand{\BV}[1]{\mathtt{bv}(#1)} \newcommand{\compiles}[1]{\text{C}\llbracket{#1}\rrbracket} \newcommand{\exec}[1]{\text{E}\llbracket{#1}\rrbracket} \renewcommand{\t}[1]{\mathtt{#1}} \newcommand{\ite}[3]{\text{if }#1\text{ then }#2\text{ else }#3} \]

Datatypes

Algebraic data types

Algebraic datatypes are a family of constructions arising out of two operations, products (a * b) and sums (a + b) (sometimes also called coproducts). A product encodes multiple arguments to constructors and sums encode choice between constructors.

{-# LANGUAGE TypeOperators #-}

data Unit = Unit                 -- 1
data Empty                       -- 0
data (a * b) = Product a b       -- a * b
data (a + b) = Inl a | Inr b     -- a + b
data Exp a b = Exp (a -> b)      -- a^b
data Rec f   = Rec (f (Rec f))   -- \mu

The two constructors Inl and Inr are the left and right injections for the sum. These allows us to construct sums.

Inl :: a -> a + b
Inr :: b -> a + b

Likewise for the product there are two function fst and snd which are projections which de construct products.

fst :: a * b -> a
snd :: a * b -> b

Once a language is endowed with the capacity to write a single product or a single sum, all higher order products can written in terms of sums of products. For example a 3-tuple can be written in terms of the composite of two 2-tuples. And indeed any n-tuple or record type can be written in terms of compositions of products.

type Prod3 a b c = a*(b*c)

data Prod3' a b c
  = Prod3 a b c

prod3 :: Prod3 Int Int Int
prod3 = Product 1 (Product 2 3)

Or a sum type of three options can be written in terms of two sums:

type Sum3 a b c = (a+b)+c

data Sum3' a b c
  = Opt1 a
  | Opt2 b
  | Opt3 c

sum3 :: Sum3 Int Int Int
sum3 = Inl (Inl 2)
data Option a = None | Some a
type Option' a = Unit + a

some :: Unit + a
some = Inl Unit

none :: a -> Unit + a
none a = Inr a

In Haskell the convention for the sum and product notation is as follows:

Notation Haskell Type
a * b (a,b)
a + b Either a b
Inl Left
Inr Right
Empty Void
Unit ()

Isorecursive Types

\[ \mathtt{Nat} = \mu \alpha. 1 + \alpha \]

roll :: Rec f -> f (Rec f)
roll (Rec f) = f

unroll :: f (Rec f) -> Rec f
unroll f = Rec f

Peano numbers:

type Nat = Rec NatF
data NatF s = Zero | Succ s

zero :: Nat
zero = Rec Zero

succ :: Nat -> Nat
succ x = Rec (Succ x)

Lists:

type List a = Rec (ListF a)
data ListF a b = Nil | Cons a b

nil :: List a
nil = Rec Nil

cons :: a -> List a -> List a
cons x y = Rec (Cons x y)

Memory Layout

Just as the type-level representation

typedef union {
    int a;
    float b;
} Sum;

typedef struct {
    int a;
    float b;
} Prod;
int main()
{
    Prod x = { .a = 1, .b = 2.0 };
    Sum sum1 = { .a = 1 };
    Sum sum2 = { .b = 2.0 }; 
}
#include <stddef.h>

typedef struct T
{
  enum { NONE, SOME } tag;
  union
  {
     void *none;
     int some;
  } value;
} Option;
int main()
{
    Option a = { .tag = NONE, .value = { .none = NULL } };
    Option b = { .tag = SOME, .value = { .some = 3 } };
}

Pattern Scrutiny

In Haskell:

data T
  = Add T T
  | Mul T T
  | Div T T
  | Sub T T
  | Num Int

eval :: T -> Int
eval x = case x of
  Add a b -> eval a + eval b
  Mul a b -> eval a + eval b
  Div a b -> eval a + eval b
  Sub a b -> eval a + eval b
  Num a   -> a

In C:

typedef struct T {
    enum { ADD, MUL, DIV, SUB, NUM } tag;
    union {
        struct {
            struct T *left, *right;
        } node;
        int value;
    };
} Expr;

int eval(Expr t)
{
    switch (t.tag) {
        case ADD:
            return eval(*t.node.left) + eval(*t.node.right);
            break;
        case MUL:
            return eval(*t.node.left) * eval(*t.node.right);
            break;
        case DIV:
            return eval(*t.node.left) / eval(*t.node.right);
            break;
        case SUB:
            return eval(*t.node.left) - eval(*t.node.right);
            break;
        case NUM:
            return t.value;
            break;
    }
}

Syntax

GHC.Generics

class Generic a where
  type family Rep a :: * -> *
  to   :: a -> Rep a x
  from :: Rep a x -> a
Constructor Models
V1 Void: used for datatypes without constructors
U1 Unit: used for constructors without arguments
K1 Constants, additional parameters.
:*: Products: encode multiple arguments to constructors
:+: Sums: encode choice between constructors
L1 Left hand side of a sum.
R1 Right hand side of a sum.
M1 Meta-information (constructor names, etc.)
newtype M1 i c f p = M1 (f p)
newtype K1 i c   p = K1 c
data U           p = U
data (:*:) a b p = a p :*: b p
data (:+:) a b p = L1 (a p) | R1 (b p)

Implementation:

{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE DefaultSignatures #-}

import GHC.Generics

-- Auxiliary class
class GEq' f where
  geq' :: f a -> f a -> Bool

instance GEq' U1 where
  geq' _ _ = True

instance (GEq c) => GEq' (K1 i c) where
  geq' (K1 a) (K1 b) = geq a b

instance (GEq' a) => GEq' (M1 i c a) where
  geq' (M1 a) (M1 b) = geq' a b

instance (GEq' a, GEq' b) => GEq' (a :+: b) where
  geq' (L1 a) (L1 b) = geq' a b
  geq' (R1 a) (R1 b) = geq' a b
  geq' _      _      = False

instance (GEq' a, GEq' b) => GEq' (a :*: b) where
  geq' (a1 :*: b1) (a2 :*: b2) = geq' a1 a2 && geq' b1 b2

--
class GEq a where
  geq :: a -> a -> Bool
  default geq :: (Generic a, GEq' (Rep a)) => a -> a -> Bool
  geq x y = geq' (from x) (from y)
-- Base equalities
instance GEq Char where geq = (==)
instance GEq Int where geq = (==)
instance GEq Float where geq = (==)
-- Equalities derived from structure of (:+:) and (:*:) for free
instance GEq a => GEq (Maybe a)
instance (GEq a, GEq b) => GEq (a,b)
main :: IO ()
main = do
  print $ geq 2 (3 :: Int)           -- False
  print $ geq 'a' 'b'                -- False
  print $ geq (Just 'a') (Just 'a')  -- True
  print $ geq ('a','b') ('a', 'b')   -- True

Pattern Expansion

Full Source

Providence Salumu