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Introduction

Goals

Off we go on our Adventure in Haskell Compilers! It will be intense, long, informative, and hopefully
fun.

It’s important to stress several points about the goals before we start our discussion:

a) is is not a rigorous introduction to type systems, it is a series of informal discussions of topics
structured around a reference implementation with links provided to more complete and rigorous
resources on the topic at hand. e goal is to give you an overview of the concepts and terminology
as well as a simple reference implementation to play around with.

b) None of the reference implementations are industrial strength, many of them gloss over funda-
mental issues that are left out for simplicity reasons. Writing an industrial strength programming
language involves work on the order of hundreds of person-years and is an enormous engineering
effort.

c) You should not use the reference compiler for anything serious. It is intended for study and
reference only.

roughout our discussion we will stress the importance of semantics and the construction of core
calculi. e frontend language syntax will be in the ML-family syntax out of convenience rather than
principle. Choice of lexical syntax is arbitrary, uninteresting, and quite often distracts from actual
substance in comparative language discussion. If there is one central theme it is that the design of the
core calculus should drive development, not the frontend language.

Prerequisites

An intermediate understanding at the level of the Real World Haskell book is recommended. We will
avoid advanced type-level programming that is often present in modern Haskell, and instead will make
heavy use of more value-level constructs. A strong familiarity with monads, monad transformers, ap-
plicatives, and the standard Haskell data structures is strongly recommended.

Some familiarity with the standard 3rd party libraries will be useful. Many of these are briefly overviewed
in What I Wish I Knew When Learning Haskell.

In particular we will use:
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Library Description
containers Core data structures
unordered-containers Core data structures
text Text datastructure
bytestring Text datastructure
transformers
mtl
filepath
directory
process
parsec Parser combinators
happy Parser generator
alex Lexer generator
pretty Pretty print combinators
ansi-wl-pprint Pretty print combinators
pretty-show Haskell pretty printer
graphscc Topological sorting
haskeline GNU Readline integration
repline Interactive shell builder
cereal
deepseq
uniqueid
uniplate
optparse-applicative Commandline argument
hoopl
fgl
llvm-general LLVM Codegen
smtLib
sbv

In later chapters some experience with C, LLVM and x86 Assembly will be very useful, although not
strictly required.

Concepts

We are going to set out to build a statically typed functional programming language with a native code
generation backend. What does all this mean?

Functional Languages

In mathematics a function is defined as a correspondence that assigns exactly one element of a set to
each element in another set. If a function f(x) = a then the function evaluated at x will always have
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the value a. Central to the notion of all mathematics is the notion of equational reasoning, where if
a = f(x) then for an expression g(f(x), f(x)), this is always equivalent to g(a, a). In other words, the
values computed by functions can always be substituted freely at all occurrences.

e central idea of pure functional programming is to structure our programs in such a way that we can
reason about them as a system of equations just like we can in mathematics. e evaluation of a pure
function is one in which side effects are prohibited; a function may only return a result without altering
the world in any observable way.

e implementation may perform effects, but central to this definition is the unobservability of such
effects. A function is said to be referentially transparent if replacing a function with its computed value
output yields the same observable behavior.

By contrast impure functions are ones which allow unrestricted and observable side effects. e invo-
cation of an impure function always allows for the possibility of performing any functionality before
yielding a value.

// impure: mutation side effects
function f() {

x += 3;
return 42;

}

// impure: international side effects
function f() {

launchMissiles();
return 42;

}

e behavior of a pure function is independent of where and when it is evaluated, whereas the behavior
of an impure function is intrinsically tied to its execution order.

Static Typing

Types are a formal language integrated with a programming language that refines the space of allowable
behavior and degree of expressible programs for the language. Types are the world’s most popular formal
method for analyzing programs.

In a language like Python all expressions have the same type at compile time, and all syntactically valid
programs can be evaluated. In the case where the program is nonsensical the runtime will bubble up
exceptions during evaluation. e Python interpreter makes no attempt to analyze the given program
for soundness at all before running it.

>>> True & ”false”
Traceback (most recent call last):

File ”<stdin>”, line 1, in <module>
TypeError: unsupported operand type(s) for &: ’bool’ and ’str’
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By comparison Haskell will do quite a bit of work to try to ensure that the program is well-defined
before running it. e language that we use to prescribe and analyze static semantics of the program is
that of static types.

Prelude> True && ”false”

<interactive>:2:9:
Couldn’t match expected type ‘Bool’ with actual type ‘[Char]’
In the second argument of ‘(&&)’, namely ‘”false”’
In the expression: True && ”false”
In an equation for ‘it’: it = True && ”false”

Catching minor type mismatch errors is the simplest example of usage, although they occur extremely
frequently as we humans are quite fallible in our reasoning about even the simplest of program con-
structions! Although this is just the tip of the iceberg, the gradual trend over the last 20 years goes
toward more expressive types in modern type systems which are capable of guaranteeing a large variety
of program correctness properties.

• Preventing resource allocation errors.
• Enforcing security in communication protocols.
• Side effect management.
• Preventing buffer overruns.
• Ensuring cryptographic properties for network protocols.
• Modeling and verifying theorems in mathematics and logic.
• Preventing data races and deadlocks in concurrent systems.

Even though type systems will never be able to capture all aspects of a program, more sophisticated
type systems are increasingly able to model a large space of program behavior. ey are one of the most
exciting areas of modern computer science research. Put most bluntly, static types let you be dumb
and offload the checking that you would otherwise have to do in your head to a system that can do the
reasoning for you and work with you to interactively build your program.

Functional Compilers

A compiler is a program for turning high-level representation of ideas in a human readable language
into another form. A compiler is typically divided into parts, a frontend and a backend. ese are loose
terms but the frontend typically deals with converting the human representation of the code into some
canonicalized form while the backend converts the canonicalized form into another form that is suitable
for evaluation.

e high level structure of our functional compiler is described by the following block diagram. Each
describes a phase which is a sequence of transformations composed to transform the input program.

Phase
Source e frontend textual source language.
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Phase
Parsing Source is parsed into an abstract syntax tree.
Desugar Redundant structure from the frontend language is removed and canonicalized.
Type Checking e program is type-checked and/or type-inferred yielding an explicitly typed form.
Transformation e core language is transformed to prepare for compilation.
Compilation e core language is lowered into a form to be compiled or interpreted.
(Code Generation) Platform specific code is generated, linked into a binary.

A pass may transform the input program from one form into another or alter the internal state of the
compiler context. e high level description of the forms our final compiler will go through is the
following sequence:

Internal forms used during compilation are intermediate representations and typically any non-trivial
language will involve several.

Parsing

e source code is simply the raw sequence of text that specifies the program. Lexing splits the text
stream into a sequence of tokens. Only the presence of invalid symbols is checked; programs that are
meaningless in other ways are accepted. Whitespace is either ignored or represented as a unique token
in the stream.

let f x = x + 1

For instance the previous program might generate a token stream like the following:

[
TokenLet,
TokenSym ”f”,
TokenSym ”x”,
TokenEq,
TokenSym ”x”,
TokenAdd,
TokenNum 1

]

We can then scan the token stream via dispatch on predefined patterns of tokens called productions, and
recursively build up the syntax datatype for the abstract syntax tree (AST).

type Name = String

data Expr
= Var Name
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| Lit Lit
| Op PrimOp [Expr]
| Let Name [Name] Expr

data Lit
= LitInt Int

data PrimOp
= Add

So for example the following string is parsed into the resulting Expr value.

let f x = x + 1

Let ”f” [”x”] (Op Add [Var ”x”, Lit (LitInt 1)])

Desugaring

Desugaring is the process by which the frontend AST is transformed into a simpler form of itself by
reducing the number of complex structures by expressing them in terms of a fixed set of simpler con-
structs.

Haskell’s frontend is very large and many constructs are simplified down. For example where clauses
and operator sections are the most common examples. Where clauses are effectively syntactic sugar for
let bindings and operator sections are desugared into lambdas with the left or right hand side argument
assigned to a fresh variable.

Type Inference

Type inference is the process by which the untyped syntax is endowed with type information by a process
known as type reconstruction or type inference. e inference process may take into account explicit type
annotations.
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let f x = x + 1

Let ”f” [] (Lam ”x” (Op Add [Var ”x”, Lit (LitInt 1)]))

Inference will generate a system of constraints which are solved via a process known as unification to
yield the type of the expression.

Int -> Int -> Int ~ a -> b
b ~ Int -> c

f :: Int -> Int

In some cases this type will be incorporated directly into the AST and the inference will transform the
frontend language into an explicitly typed core language.

Let ”f” []
(Lam ”x”
(TArr TInt TInt)
(App

(App
(Prim ”primAdd”) (Var ”x”))

(Lit (LitInt 1))))

Transformation

e type core representation is often suitable for evaluation, but quite often different intermediate
representations are more amenable to certain optimizations and make various semantic properties of the
language explicit. ese kind of intermediate forms will often attach information about free variables,
allocations, and usage information directly in the AST structure.

e most important form we will use is called the Spineless Tagless G-Machine ( STG ), an abstract
machine that makes many of the properties of lazy evaluation explicit directly in the AST.

Code Generation

After translating an expression to the core language we will either evaluate it with a high-level interpreter
written in Haskell itself, or translate it to another intermediate language (such as LLVM IR or GHC’s
Cmm) which can be compiled into native code. is intermediate language abstracts over the process
of assigning values to, and moving values between CPU registers and main memory.

As an example, the let statement below would be compiled into some intermediate representation, like
LLVM IR.

let f x = x + 1
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define i32 @f(i32 %x) {
entry:

%add = add nsw i32 %x, 1
ret i32 %add

}

From the intermediate representation the code can be compiled into the system’s assembly language.
Any additional code that is required for evaluation is linked into the resulting module.

f:
movl %edi, -4(%rsp)
movl -4(%rsp), %edi
addl $1, %edi
movl %edi, %eax
ret

And ultimately this code will be assembled into platform specific instructions by the native code generator,
encoded as a predefined sequence of CPU instructions defined by the processor specification.

0000000000000000 <f>:
0: 89 7c 24 fc mov %edi,-0x4(%rsp)
4: 8b 7c 24 fc mov -0x4(%rsp),%edi
8: 81 c7 01 00 00 00 add $0x1,%edi
e: 89 f8 mov %edi,%eax
10: c3 retq
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Haskell Basics

Let us now survey a few of the core concepts that will be used throughout the text. is will be a very
fast and informal discussion. If you are familiar with all of these concepts then it is very likely you will
be able to read the entirety of this tutorial and focus on the subject domain and not the supporting
code. e domain material itself should largely be accessible to an ambitious high school student or
undergraduate; and requires nothing more than a general knowledge of functional programming.

Functions

Functions are the primary building block of all of Haskell logic.

add :: Integer -> Integer -> Integer
add x y = x + y

In Haskell all functions are pure. e only thing a function may do is return a value.

All functions in Haskell are curried. For example, when a function of three arguments receives less than
three arguments, it yields a partially applied function, which, when given additional arguments, yields
yet another function or the resulting value if all the arguments were supplied.

g :: Int -> Int -> Int -> Int
g x y z = x + y + z

h :: Int -> Int
h = g 2 3

Haskell supports higher-order functions, i.e., functions which take functions as arguments and yield
other functions. For example the compose function takes two functions as arguments f and g and
returns the composite function of applying f then g.

compose f g = \x -> f (g x)

iterate :: (a -> a) -> a -> [a]
iterate f x = x : (iterate f (f x))
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Datatypes

Constructors for datatypes come in two flavors: sum types and product types.

A sum type consists of multiple options of type constructors under the same type. e two cases can be
used at all locations the type is specified, and are discriminated using pattern matching.

data Sum = A Int | B Bool

A product type combines multiple fields into the same type.

data Prod = Prod Int Bool

Records are a special product type that, in addition to generating code for the constructors, generates a
special set of functions known as selectors which extract the values of a specific field from the record.

data Prod = Prod { a :: Int , b :: Bool }

-- a :: Prod -> Int
-- b :: Prod -> Bool

Sums and products can be combined.

data T1
= A Int Int
| B Bool Bool

e fields of a datatype may be parameterized, in which case the type depends on the specific types the
fields are instantiated with.

data Maybe a = Nothing | Just a

Values

A list is a homogeneous, inductively defined sum type of linked cells parameterized over the type of its
values.

data List a = Nil | Cons a (List a)

a = [1,2,3]
a = Cons 1 (Cons 2 (Cons 3 Nil))

List have special value-level syntax:
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(:) = Cons
[] = Nil

(1 : (2 : (3 : []))) = [1,2,3]

A tuple is a heterogeneous product type parameterized over the types of its two values.

Tuples also have special value-level syntax.

data Pair a b = Pair a b

a = (1,2)
a = Pair 1 2

(,) = Pair

Pattern matching

Pattern matching allows us to discriminate on the constructors of a datatype, mapping separate cases to
separate code paths and binding variables for each of the fields of the datatype.

data Maybe a = Nothing | Just a

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n f Nothing = n
maybe n f (Just a) = f a

Top-level pattern matches can always be written identically as case statements.

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n f x = case x of

Nothing -> n
Just a -> f a

Wildcards can be placed for patterns where the resulting value is not used.

const :: a -> b -> a
const x _ = x

Subexpression in the pattern can be explicitly bound to variables scoped on the right hand side of the
pattern match.

f :: Maybe (Maybe a) -> Maybe a
f (Just x @ (Just _)) = x
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List and tuples have special pattern syntax.

length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + (length xs)

fst :: (a, b) -> a
fst (a,b) = a

Patterns may be guarded by predicates (functions which yield a boolean). Guards only allow the execu-
tion of a branch if the corresponding predicate yields True.

filter :: (a -> Bool) -> [a] -> [a]
filter pred [] = []
filter pred (x:xs)

| pred x = x : filter pred xs
| otherwise = filter pred xs

Recursion

In Haskell all iteration over data structures is performed by recursion. Entering a function in Haskell
does not create a new stack frame, the logic of the function is simply entered with the arguments on
the stack and yields result to the register. In the case where a function returns an invocation of itself
invoked in the tail position the resulting logic is compiled identically to while loops in other languages,
via a jmp instruction instead of a call.

sum :: [Int] -> [Int]
sum ys = go ys 0

where
go (x:xs) i = go xs (i+x)
go [] i = i

Functions can be defined to recurse mutually on each other.

even 0 = True
even n = odd (n-1)

odd 0 = False
odd n = even (n-1)

18



Laziness

A Haskell program can be thought of as being equivalent to a large directed graph. Each edge represents
the use of a value, and each node is the source of a value. A node can be:

• A thunk, i.e., the application of a function to values that have not been evaluated yet
• A thunk that is currently being evaluated, which may induce the evaluation of other thunks in

the process
• An expression in weak head normal form, which is only evaluated to the outermost constructor or

lambda abstraction

e runtime has the task of determining which thunks are to be evaluated by the order in which they
are connected to the main function node. is is the essence of all evaluation in Haskell and is called
graph reduction.

Self-referential functions are allowed in Haskell. For example, the following functions generate infinite
lists of values. However, they are only evaluated up to the depth that is necessary.

-- Infinite stream of 1’s
ones = 1 : ones

-- Infinite count from n
numsFrom n = n : numsFrom (n+1)

-- Infinite stream of integer squares
squares = map (^2) (numsfrom 0)

e function take consumes an infinite stream and only evaluates the values that are needed for the
computation.

take :: Int -> [a] -> [a]
take n _ | n <= 0 = []
take n [] = []
take n (x:xs) = x : take (n-1) xs

take 5 squares
-- [0,1,4,9,16]

is also admits diverging terms (called bottoms), which have no normal form. Under lazy evaluation,
these values can be threaded around and will never diverge unless actually forced.

bot = bot

So, for instance, the following expression does not diverge since the second argument is not used in the
body of const.
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const 42 bot

e two bottom terms we will use frequently are used to write the scaffolding for incomplete programs.

error :: String -> a
undefined :: a

Higher-Kinded Types

e “type of types” in Haskell is the language of kinds. Kinds are either an arrow (k -> k’) or a star
(*).

e kind of Int is *, while the kind of Maybe is * -> *. Haskell supports higher-kinded types, which
are types that take other types and construct a new type. A type constructor in Haskell always has a
kind which terminates in a *.

-- T1 :: (* -> *) -> * -> *
data T1 f a = T1 (f a)

e three special types (,), (->), [] have special type-level syntactic sugar:

(,) Int Int = (Int, Int)
(->) Int Int = Int -> Int
[] Int = [Int]

Typeclasses

A typeclass is a collection of functions which conform to a given interface. An implementation of an
interface is called an instance. Typeclasses are effectively syntactic sugar for records of functions and
nested records (called dictionaries) of functions parameterized over the instance type. ese dictionaries
are implicitly threaded throughout the program whenever an overloaded identifier is used. When a
typeclass is used over a concrete type, the implementation is simply spliced in at the call site. When a
typeclass is used over a polymorphic type, an implicit dictionary parameter is added to the function so
that the implementation of the necessary functionality is passed with the polymorphic value.

Typeclasses are “open” and additional instances can always be added, but the defining feature of a
typeclass is that the instance search always converges to a single type to make the process of resolving
overloaded identifiers globally unambiguous.

For instance, the Functor typeclass allows us to “map” a function generically over any type of kind (*
-> *) and apply it to its internal structure.

class Functor f where
fmap :: (a -> b) -> f a -> f b
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instance Functor [] where
fmap f [] = []
fmap f (x:xs) = f x : fmap f xs

instance Functor ((,) a) where
fmap f (a,b) = (a, f b)

Operators

In Haskell, infix operators are simply functions, and quite often they are used in place of alphanumerical
names when the functions involved combine in common ways and are subject to algebraic laws.

infixl 6 +
infixl 6 -
infixl 7 /
infixl 7 *

infixr 5 ++
infixr 9 .

Operators can be written in section form:

(x+) = \y -> x+y
(+y) = \x -> x+y
(+) = \x y -> x+y

Any binary function can be written in infix form by surrounding the name in backticks.

(+1) ‘fmap‘ [1,2,3] -- [2,3,4]

Monads

A monad is a typeclass with two functions: bind and return.

class Monad m where
bind :: m a -> (a -> m b) -> m b
return :: a -> m a

e bind function is usually written as an infix operator.
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infixl 1 >>=

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

is defines the structure, but the monad itself also requires three laws that all monad instances must
satisfy.

Law 1

return a >>= f = f a

Law 2

m >>= return = m

Law 3

(m >>= f) >>= g = m >>= (\x -> f x >>= g)

Haskell has a level of syntactic sugar for monads known as do-notation. In this form, binds are written
sequentially in block form which extract the variable from the binder.

do { a <- f ; m } = f >>= \a -> do { m }
do { f ; m } = f >> do { m }
do { m } = m

So, for example, the following are equivalent:

do
a <- f
b <- g
c <- h
return (a, b, c)

f >>= \a ->
g >>= \b ->
h >>= \c ->

return (a, b, c)
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Applicatives

Applicatives allow sequencing parts of some contextual computation, but do not bind variables therein.
Strictly speaking, applicatives are less expressive than monads.

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

(<$>) :: Functor f => (a -> b) -> f a -> f b
(<$>) = fmap

Applicatives satisfy the following laws:

pure id <*> v = v -- Identity
pure f <*> pure x = pure (f x) -- Homomorphism
u <*> pure y = pure ($ y) <*> u -- Interchange
u <*> (v <*> w) = pure (.) <*> u <*> v <*> w -- Composition

For example:

example1 :: Maybe Integer
example1 = (+) <$> m1 <*> m2

where
m1 = Just 3
m2 = Nothing

Instances of the Applicative typeclass also have available the functions *> and <*. ese functions se-
quence applicative actions while discarding the value of one of the arguments. e operator *> discards
the left argument, while <* discards the right. For example, in a monadic parser combinator library,
the *> would discard the value of the first argument but return the value of the second.

Monoids

Monoids provide an interface for structures which have an associative operation (mappend, there is also
the synonym <>) and a neutral (also: unit or zero) element (mempty) for that operation.

class Monoid a where
mempty :: a
mappend :: a -> a -> a
mconcat :: [a] -> a

e canonical example is the list type with concatenation as the operation and the empty list as zero.
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import Data.Monoid

a :: [Integer]
a = [1,2,3] <> [4,5,6]

b :: [Integer]
b = ([1,2,3] <> mempty) <> (mempty <> [4,5,6])

Deriving

Instances for typeclasses like Read, Show, Eq and Ord can be derived automatically by the Haskell
compiler.

data PlatonicSolid
= Tetrahedron
| Cube
| Octahedron
| Dodecahedron
| Icosahedron
deriving (Show, Eq, Ord, Read)

example = show Icosahedron
example = read ”Tetrahedron”
example = Cube == Octahedron
example = sort [Cube, Dodecahedron]

IO

A value of type IO a is a computation which, when performed, does some I/O before returning a value
of type a. e notable feature of Haskell is that IO is still functionally pure; a value of type IO a is
simply a value which stands for a computation which, when invoked, will perform IO. ere is no way
to peek into its contents without running it.

For instance, the following function does not print the numbers 1 to 5 to the screen. Instead, it builds
a list of IO computations:

fmap print [1..5] :: [IO ()]

We can then manipulate them as an ordinary list of values:

reverse (fmap print [1..5]) :: [IO ()]

We can then build a composite computation of each of the IO actions in the list using sequence_,
which will evaluate the actions from left to right. e resulting IO computation can be evaluated in
main (or the GHCi repl, which effectively is embedded inside of IO).
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>> sequence_ (fmap print [1..5]) :: IO ()
1
2
3
4
5

>> sequence_ (reverse (fmap print [1..5])) :: IO ()
5
4
3
2
1

e IO monad is wired into the runtime with compiler support. It is a special case and most monads
in Haskell have nothing to do with effects in this sense.

putStrLn :: String -> IO ()
print :: Show a => a -> IO ()

e type of main is always IO ().

main :: IO ()
main = do

putStrLn ”Enter a number greater than 3: ”
x <- readLn
print (x > 3)

e essence of monadic IO in Haskell is that effects are reified as first class values in the language and
reflected in the type system. is is one of foundational ideas of Haskell, although it is not unique to
Haskell.

Monad Transformers

Monads can be combined together to form composite monads. Each of the composite monads consists
of layers of different monad functionality. For example, we can combine an error-reporting monad with
a state monad to encapsulate a certain set of computations that need both functionalities. e use of
monad transformers, while not always necessary, is often one of the primary ways to structure modern
Haskell programs.

class MonadTrans t where
lift :: Monad m => m a -> t m a
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e implementation of monad transformers is comprised of two different complementary libraries,
transformers and mtl. e transformers library provides the monad transformer layers and mtl
extends this functionality to allow implicit lifting between several layers.

To use transformers, we simply import the Trans variants of each of the layers we want to compose and
then wrap them in a newtype.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

import Control.Monad.Trans
import Control.Monad.Trans.State
import Control.Monad.Trans.Writer

newtype Stack a = Stack { unStack :: StateT Int (WriterT [Int] IO) a }
deriving (Monad)

foo :: Stack ()
foo = Stack $ do

put 1 -- State layer
lift $ tell [2] -- Writer layer
lift $ lift $ print 3 -- IO Layer
return ()

evalStack :: Stack a -> IO [Int]
evalStack m = execWriterT (evalStateT (unStack m) 0)

As illustrated by the following stack diagram:

Using mtl and GeneralizedNewtypeDeriving, we can produce the same stack but with a simpler
forward-facing interface to the transformer stack. Under the hood, mtl is using an extension called
FunctionalDependencies to automatically infer which layer of a transformer stack a function belongs
to and can then lift into it.
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{-# LANGUAGE GeneralizedNewtypeDeriving #-}

import Control.Monad.Trans
import Control.Monad.State
import Control.Monad.Writer

newtype Stack a = Stack { unStack :: StateT Int (WriterT [Int] IO) a }
deriving (Monad, MonadState Int, MonadWriter [Int], MonadIO)

foo :: Stack ()
foo = do

put 1 -- State layer
tell [2] -- Writer layer
liftIO $ print 3 -- IO Layer
return ()

evalStack :: Stack a -> IO [Int]
evalStack m = execWriterT (evalStateT (unStack m) 0)

StateT

e state monad allows functions within a stateful monadic context to access and modify shared state.

put :: s -> State s () -- set the state value
get :: State s s -- get the state
gets :: (s -> a) -> State s a -- apply a function over the state, and return the result
modify :: (s -> s) -> State s () -- set the state, using a modifier function

Evaluation functions often follow the naming convention of using the prefixes run, eval, and exec:

execState :: State s a -> s -> s -- yield the state
evalState :: State s a -> s -> a -- yield the return value
runState :: State s a -> s -> (a, s) -- yield the state and return value

For example:

import Control.Monad.State

test :: State Int Int
test = do

put 3
modify (+1)
get

main :: IO ()
main = print $ execState test 0
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ReaderT

e Reader monad allows a fixed value to be passed around inside the monadic context.

ask :: Reader r r -- get the value
asks :: (r -> a) -> Reader r a -- apply a function to the value, and return the result
local :: (r -> r) -> Reader r a -> Reader r a -- run a monadic action, with the value modified by a function

For example:

import Control.Monad.Reader

data MyContext = MyContext
{ foo :: String
, bar :: Int
} deriving (Show)

computation :: Reader MyContext (Maybe String)
computation = do

n <- asks bar
x <- asks foo
if n > 0
then return (Just x)
else return Nothing

ex1 :: Maybe String
ex1 = runReader computation $ MyContext ”hello” 1

ex2 :: Maybe String
ex2 = runReader computation $ MyContext ”haskell” 0

WriterT

e writer monad lets us emit a lazy stream of values from within a monadic context. e primary
function tell adds a value to the writer context.

tell :: (Monoid w) => w -> Writer w ()

e monad can be evaluated returning the collected writer context and optionally the returned value.

execWriter :: (Monoid w) => Writer w a -> w
runWriter :: (Monoid w) => Writer w a -> (a, w)

import Control.Monad.Writer
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type MyWriter = Writer [Int] String

example :: MyWriter
example = do

tell [1..5]
tell [5..10]
return ”foo”

output :: (String, [Int])
output = runWriter example

ExceptT

e Exception monad allows logic to fail at any point during computation with a user-defined exception.
e exception type is the first parameter of the monad type.

throwError :: e -> Except e a
runExcept :: Except e a -> Either e a

For example:

import Control.Monad.Except

type Err = String

safeDiv :: Int -> Int -> Except Err Int
safeDiv a 0 = throwError ”Divide by zero”
safeDiv a b = return (a ‘div‘ b)

example :: Either Err Int
example = runExcept $ do

x <- safeDiv 2 3
y <- safeDiv 2 0
return (x + y)

Kleisli Arrows

e additional combinators for monads ((>=>), (<=<)) compose two different monadic actions in
sequence. (<=<) is the monadic equivalent of the regular function composition operator (.) and
(>=>) is just flip (<=<).

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c

e monad laws can be expressed equivalently in terms of Kleisli composition.

(f >=> g) >=> h = f >=> (g >=> h)
return >=> f = f
f >=> return = f
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Text

e usual String type is a singly-linked list of characters, which, although simple, is not efficient in
storage or locality. e letters of the string are not stored contiguously in memory and are instead
allocated across the heap.

e Text and ByteString libraries provide alternative efficient structures for working with contiguous
blocks of text data. ByteString is useful when working with the ASCII character set, while Text
provides a text type for use with Unicode.

e OverloadedStrings extension allows us to overload the string type in the frontend language to
use any one of the available string representations.

class IsString a where
fromString :: String -> a

pack :: String -> Text
unpack :: Text -> String

So, for example:

{-# LANGUAGE OverloadedStrings #-}
import qualified Data.Text as T

str :: T.Text
str = ”bar”

Cabal & Stack

To set up an existing project with a sandbox, run:

$ cabal sandbox init

is will create the .cabal-sandbox directory, which is the local path GHC will use to look for de-
pendencies when building the project.

To install dependencies from Hackage, run:

$ cabal install --only-dependencies

Finally, configure the library for building:

$ cabal configure

Now we can launch a GHCi shell scoped with the modules from the project in scope:

$ cabal repl
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Resources

If any of these concepts are unfamiliar, there are some external resources that will try to explain them.
e most thorough is the Stanford course lecture notes.

• Stanford CS240h by Bryan O’Sullivan, David Terei
• Real World Haskell by Bryan O’Sullivan, Don Stewart, and John Goerzen

ere are some books as well, but your mileage may vary with these. Much of the material is dated and
only covers basic programming and not “programming in the large”.

• Introduction to Functioanl Programming by Richard Bird and Philip Wadler
• Learn you a Haskell by Miran Lipovača
• Programming in Haskell by Graham Hutton
• inking Functionally by Richard Bird
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Parsing

Parser Combinators

For parsing in Haskell it is quite common to use a family of libraries known as parser combinators
which let us compose higher order functions to generate parsers. Parser combinators are a particularly
expressive pattern that allows us to quickly prototype language grammars in an small embedded domain
language inside of Haskell itself. Most notably we can embed custom Haskell logic inside of the parser.

NanoParsec

So now let’s build our own toy parser combinator library which we’ll call NanoParsec just to get the
feel of how these things are built.

{-# OPTIONS_GHC -fno-warn-unused-do-bind #-}

module NanoParsec where

import Data.Char
import Control.Monad
import Control.Applicative

Structurally a parser is a function which takes an input stream of characters and yields a parse tree by
applying the parser logic over sections of the character stream (called lexemes) to build up a composite
data structure for the AST.

newtype Parser a = Parser { parse :: String -> [(a,String)] }

Running the function will result in traversing the stream of characters yielding a value of type a that
usually represents the AST for the parsed expression, or failing with a parse error for malformed input,
or failing by not consuming the entire stream of input. A more robust implementation would track the
position information of failures for error reporting.

runParser :: Parser a -> String -> a
runParser m s =
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case parse m s of
[(res, [])] -> res
[(_, rs)] -> error ”Parser did not consume entire stream.”
_ -> error ”Parser error.”

Recall that in Haskell the String type is defined to be a list of Char values, so the following are equivalent
forms of the same data.

”1+2*3”
[’1’, ’+’, ’2’, ’*’, ’3’]

We advance the parser by extracting a single character from the parser stream and returning in a tuple
containing itself and the rest of the stream. e parser logic will then scrutinize the character and either
transform it in some portion of the output or advance the stream and proceed.

item :: Parser Char
item = Parser $ \s ->

case s of
[] -> []
(c:cs) -> [(c,cs)]

A bind operation for our parser type will take one parse operation and compose it over the result of
second parse function. Since the parser operation yields a list of tuples, composing a second parser
function simply maps itself over the resulting list and concat’s the resulting nested list of lists into a
single flat list in the usual list monad fashion. e unit operation injects a single pure value as the result,
without reading from the parse stream.

bind :: Parser a -> (a -> Parser b) -> Parser b
bind p f = Parser $ \s -> concatMap (\(a, s’) -> parse (f a) s’) $ parse p s

unit :: a -> Parser a
unit a = Parser (\s -> [(a,s)])

As the terminology might have indicated this is indeed a Monad (also Functor and Applicative).

instance Functor Parser where
fmap f (Parser cs) = Parser (\s -> [(f a, b) | (a, b) <- cs s])

instance Applicative Parser where
pure = return
(Parser cs1) <*> (Parser cs2) = Parser (\s -> [(f a, s2) | (f, s1) <- cs1 s, (a, s2) <- cs2 s1])
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instance Monad Parser where
return = unit
(>>=) = bind

Of particular importance is that this particular monad has a zero value (failure), namely the function
which halts reading the stream and returns the empty stream. Together this forms a monoidal structure
with a secondary operation (combine) which applies two parser functions over the same stream and
concatenates the result. Together these give rise to both the Alternative and MonadPlus class instances
which encode the logic for trying multiple parse functions over the same stream and handling failure
and rollover.

e core operator introduced here is the (<|>) operator for combining two optional paths of parser
logic, switching to the second path if the first fails with the zero value.

instance MonadPlus Parser where
mzero = failure
mplus = combine

instance Alternative Parser where
empty = mzero
(<|>) = option

combine :: Parser a -> Parser a -> Parser a
combine p q = Parser (\s -> parse p s ++ parse q s)

failure :: Parser a
failure = Parser (\cs -> [])

option :: Parser a -> Parser a -> Parser a
option p q = Parser $ \s ->

case parse p s of
[] -> parse q s
res -> res

Derived automatically from the Alternative typeclass definition are the many and some functions. Many
takes a single function argument and repeatedly applies it until the function fails and then yields the
collected results up to that point. e some function behaves similar except that it will fail itself if there
is not at least a single match.

-- | One or more.
some :: f a -> f [a]
some v = some_v

where
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many_v = some_v <|> pure []
some_v = (:) <$> v <*> many_v

-- | Zero or more.
many :: f a -> f [a]
many v = many_v

where
many_v = some_v <|> pure []
some_v = (:) <$> v <*> many_v

On top of this we can add functionality for checking whether the current character in the stream matches
a given predicate ( i.e is it a digit, is it a letter, a specific word, etc).

satisfy :: (Char -> Bool) -> Parser Char
satisfy p = item ‘bind‘ \c ->

if p c
then unit c
else (Parser (\cs -> []))

Essentially this 50 lines code encodes the entire core of the parser combinator machinery. All higher
order behavior can be written on top of just this logic. Now we can write down several higher level
functions which operate over sections of the stream.

chainl1 parses one or more occurrences of p, separated by op and returns a value obtained by a recurs-
ing until failure on the left hand side of the stream. is can be used to parse left-recursive grammar.

oneOf :: [Char] -> Parser Char
oneOf s = satisfy (flip elem s)

chainl :: Parser a -> Parser (a -> a -> a) -> a -> Parser a
chainl p op a = (p ‘chainl1‘ op) <|> return a

chainl1 :: Parser a -> Parser (a -> a -> a) -> Parser a
p ‘chainl1‘ op = do {a <- p; rest a}

where rest a = (do f <- op
b <- p
rest (f a b))

<|> return a

Using satisfy we can write down several combinators for detecting the presence of specific common
patterns of characters ( numbers, parenthesized expressions, whitespace, etc ).

char :: Char -> Parser Char
char c = satisfy (c ==)
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natural :: Parser Integer
natural = read <$> some (satisfy isDigit)

string :: String -> Parser String
string [] = return []
string (c:cs) = do { char c; string cs; return (c:cs)}

token :: Parser a -> Parser a
token p = do { a <- p; spaces ; return a}

reserved :: String -> Parser String
reserved s = token (string s)

spaces :: Parser String
spaces = many $ oneOf ” \n\r”

digit :: Parser Char
digit = satisfy isDigit

number :: Parser Int
number = do

s <- string ”-” <|> return []
cs <- some digit
return $ read (s ++ cs)

parens :: Parser a -> Parser a
parens m = do

reserved ”(”
n <- m
reserved ”)”
return n

And that’s about it! In a few hundred lines we have enough of a parser library to write down a simple
parser for a calculator grammar. In the formal Backus–Naur Form our grammar would be written as:

number = [ ”-” ] digit { digit }.
digit = ”0” | ”1” | ... | ”8” | ”9”.
expr = term { addop term }.
term = factor { mulop factor }.
factor = ”(” expr ”)” | number.
addop = ”+” | ”-”.
mulop = ”*”.

e direct translation to Haskell in terms of our newly constructed parser combinator has the following
form:
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data Expr
= Add Expr Expr
| Mul Expr Expr
| Sub Expr Expr
| Lit Int
deriving Show

eval :: Expr -> Int
eval ex = case ex of

Add a b -> eval a + eval b
Mul a b -> eval a * eval b
Sub a b -> eval a - eval b
Lit n -> n

int :: Parser Expr
int = do

n <- number
return (Lit n)

expr :: Parser Expr
expr = term ‘chainl1‘ addop

term :: Parser Expr
term = factor ‘chainl1‘ mulop

factor :: Parser Expr
factor =

int
<|> parens expr

infixOp :: String -> (a -> a -> a) -> Parser (a -> a -> a)
infixOp x f = reserved x >> return f

addop :: Parser (Expr -> Expr -> Expr)
addop = (infixOp ”+” Add) <|> (infixOp ”-” Sub)

mulop :: Parser (Expr -> Expr -> Expr)
mulop = infixOp ”*” Mul

run :: String -> Expr
run = runParser expr

main :: IO ()
main = forever $ do

putStr ”> ”
a <- getLine
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print $ eval $ run a

Now we can try out our little parser.

$ runhaskell parsec.hs
> 1+2
3
> 1+2*3
7

Generalizing String

e limitations of the String type are well-known, but what is particularly nice about this approach
is that it adapts to different stream types simply by adding an additional parameter to the Parser type
which holds the stream type. In its place a more efficient string data structure (Text, ByteString) can
be used.

newtype Parser s a = Parser { parse :: s -> [(a,s)] }

For the first couple of simple parsers we will use the String type for simplicity’s sake, but later we will
generalize our parsers to use the Text type. e combinators and parsing logic will not change, only
the lexer and language definition types will change slightly to a generalized form.

Parsec

Now that we have the feel for parser combinators work, we can graduate to the full Parsec library. We’ll
effectively ignore the gritty details of parsing and lexing from now on. Although an interesting subject
parsing is effectively a solved problem and the details are not terribly important for our purposes.

e Parsec library defines a set of common combinators much like the operators we defined in our toy
library.

Combinator Description
char Match the given character.
string Match the given string.
<|> e choice operator tries to parse the first argument before proceeding to the second. Can be chained sequentially to generate a sequence of options.
many Consumes an arbitrary number of patterns matching the given pattern and returns them as a list.
many1 Like many but requires at least one match.
sepBy Match a arbitrary length sequence of patterns, delimited by a given pattern.
optional Optionally parses a given pattern returning its value as a Maybe.
try Backtracking operator will let us parse ambiguous matching expressions and restart with a different pattern.
parens Parses the given pattern surrounded by parentheses.
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Tokens

To create a Parsec lexer we must first specify several parameters about how individual characters are
handled and converted into tokens. For example some tokens will be handled as comments and simply
omitted from the parse stream. Other parameters include indicating what characters are to be handled
as keyword identifiers or operators.

langDef :: Tok.LanguageDef ()
langDef = Tok.LanguageDef

{ Tok.commentStart = ”{-”
, Tok.commentEnd = ”-}”
, Tok.commentLine = ”--”
, Tok.nestedComments = True
, Tok.identStart = letter
, Tok.identLetter = alphaNum <|> oneOf ”_’”
, Tok.opStart = oneOf ”:!#$%&*+./<=>?@\\^|-~”
, Tok.opLetter = oneOf ”:!#$%&*+./<=>?@\\^|-~”
, Tok.reservedNames = reservedNames
, Tok.reservedOpNames = reservedOps
, Tok.caseSensitive = True
}

Lexer

Given the token definition we can create the lexer functions.

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser langDef

parens :: Parser a -> Parser a
parens = Tok.parens lexer

reserved :: String -> Parser ()
reserved = Tok.reserved lexer

semiSep :: Parser a -> Parser [a]
semiSep = Tok.semiSep lexer

reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

prefixOp :: String -> (a -> a) -> Ex.Operator String () Identity a
prefixOp s f = Ex.Prefix (reservedOp s >> return f)

Abstract Syntax Tree

In a separate module we’ll now define the abstract syntax for our language as a datatype.
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module Syntax where

data Expr
= Tr
| Fl
| Zero
| IsZero Expr
| Succ Expr
| Pred Expr
| If Expr Expr Expr
deriving (Eq, Show)

Parser

Much like before our parser is simply written in monadic blocks, each mapping a set of patterns to a
construct in our Expr type. e toplevel entry point to our parser is the expr function which we can
parse with by using the Parsec function parse.

prefixOp s f = Ex.Prefix (reservedOp s >> return f)

-- Prefix operators
table :: Ex.OperatorTable String () Identity Expr
table = [

[
prefixOp ”succ” Succ

, prefixOp ”pred” Pred
, prefixOp ”iszero” IsZero
]

]

-- if/then/else
ifthen :: Parser Expr
ifthen = do

reserved ”if”
cond <- expr
reservedOp ”then”
tr <- expr
reserved ”else”
fl <- expr
return (If cond tr fl)

-- Constants
true, false, zero :: Parser Expr
true = reserved ”true” >> return Tr
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false = reserved ”false” >> return Fl
zero = reservedOp ”0” >> return Zero

expr :: Parser Expr
expr = Ex.buildExpressionParser table factor

factor :: Parser Expr
factor =

true
<|> false
<|> zero
<|> ifthen
<|> parens expr

contents :: Parser a -> Parser a
contents p = do

Tok.whiteSpace lexer
r <- p
eof
return r

e toplevel function we’ll expose from our Parse module is parseExprwhich will be called as the entry
point in our REPL.

parseExpr s = parse (contents expr) ”<stdin>” s

Evaluation

Our small language gives rise to two syntactic classes, values and expressions. Values are in normal form
and cannot be reduced further. ey consist of True and False values and literal numbers.

isNum Zero = True
isNum (Succ t) = isNum t
isNum _ = False

isVal :: Expr -> Bool
isVal Tr = True
isVal Fl = True
isVal t | isNum t = True
isVal _ = False

e evaluation of our languages uses the Maybe applicative to accommodate the fact that our reduction
may halt at any level with a Nothing if the expression being reduced has reached a normal form or
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cannot proceed because the reduction simply isn’t well-defined. e rules for evaluation are a single
step by which an expression takes a single small step from one form to another by a given rule.

eval’ x = case x of
IsZero Zero -> Just Tr
IsZero (Succ t) | isNum t -> Just Fl
IsZero t -> IsZero <$> (eval’ t)
Succ t -> Succ <$> (eval’ t)
Pred Zero -> Just Zero
Pred (Succ t) | isNum t -> Just t
Pred t -> Pred <$> (eval’ t)
If Tr c _ -> Just c
If Fl _ a -> Just a
If t c a -> (\t’ -> If t’ c a) <$> eval’ t
_ -> Nothing

At the toplevel we simply apply eval’ repeatedly until either a value is reached or we’re left with an
expression that has no well-defined way to proceed. e term is “stuck” and the program is in an
undefined state.

nf x = fromMaybe x (nf <$> eval’ x)

eval :: Expr -> Maybe Expr
eval t = case nf t of

nft | isVal nft -> Just nft
| otherwise -> Nothing -- term is ”stuck”

REPL

e driver for our simple language simply invokes all of the parser and evaluation logic in a loop feeding
the resulting state to the next iteration. We will use the haskeline library to give us readline interactions
for the small REPL. Behind the scenes haskeline is using readline or another platform-specific system
library to manage the terminal input. To start out we just create the simplest loop, which only parses
and evaluates expressions and prints them to the screen. We’ll build on this pattern in each chapter,
eventually ending up with a more full-featured REPL.

e two functions of note are the operations for the InputT monad transformer.

runInputT :: Settings IO -> InputT IO a -> IO a
getInputLine :: String -> InputT IO (Maybe String)

When the user enters an EOF or sends a SIGQUIT to input, getInputLine will yield Nothing and can
handle the exit logic.
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process :: String -> IO ()
process line = do

let res = parseExpr line
case res of
Left err -> print err
Right ex -> print $ runEval ex

main :: IO ()
main = runInputT defaultSettings loop

where
loop = do
minput <- getInputLine ”Repl> ”
case minput of

Nothing -> outputStrLn ”Goodbye.”
Just input -> (liftIO $ process input) >> loop

Soundness

Great, now let’s test our little interpreter and indeed we see that it behaves as expected.

Arith> succ 0
succ 0

Arith> succ (succ 0)
succ (succ 0)

Arith> iszero 0
true

Arith> if false then true else false
false

Arith> iszero (pred (succ (succ 0)))
false

Arith> pred (succ 0)
0

Arith> iszero false
Cannot evaluate

Arith> if 0 then true else false
Cannot evaluate

Oh no, our calculator language allows us to evaluate terms which are syntactically valid but semanti-
cally meaningless. We’d like to restrict the existence of such terms since when we start compiling our

43



languages later into native CPU instructions these kind errors will correspond to all sorts of nastiness
(segfaults, out of bounds errors, etc). How can we make these illegal states unrepresentable to begin
with?

Full Source

• NanoParsec
• Calculator
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at language is an instrument of human reason, and not merely a medium for the expression
of thought, is a truth generally admitted.
— George Boole

Lambda Calculus

Fundamental to all functional languages is the most atomic notion of composition, function abstraction
of a single variable. e lambda calculus consists very simply of three terms and all valid recursive
combinations thereof:

is compact notation looks slightly different from what you’re used to in Haskell but it’s actually not:
λx.xa is equivalent to \x -> x a. is means what you see in the picture above would translate to (\x
-> x) (\y -> y), which would be equivalent to writing id id (which of course evaluates to id).

e three terms are typically referred to in code by several contractions of their names:

• Var - A variable
• Lam - A lambda abstraction
• App - An application

A lambda term is said to bind its variable. For example the lambda here binds x. In mathematics we
would typically write:

f(x) = e

Using the lambda calculus notation we write:
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f = λx.e

In other words, λx.e is a function that takes a variable x and returns e.

e := x (Var)
λx.e (Lam)
e e (App)

e lambda calculus is often called the “assembly language” of functional programming, and variations
and extensions on it form the basis of many functional compiler intermediate forms for languages like
Haskell, OCaml, Standard ML, etc. e variation we will discuss first is known as untyped lambda
calculus, by contrast later we will discuss the typed lambda calculus which is an extension thereof.

ere are several syntactical conventions that we will adopt when writing lambda expressions. Applica-
tion of multiple expressions associates to the left.

x1 x2 x3 ...xn = (...((x1x2)x3)...xn)

By convention application extends as far to the right as is syntactically meaningful. Parentheses are used
to disambiguate.

In the lambda calculus, each lambda abstraction binds a single variable, and the lambda abstraction’s
body may be another lambda abstraction. Out of convenience we often write multiple lambda abstrac-
tions with their variables on one lambda symbol. is is merely a syntactical convention and does not
change the underlying meaning.

λxy.z = λx.λy.z

e actual implementation of the lambda calculus admits several degrees of freedom in how lambda
abstractions are represented. e most notable is the choice of identifiers for the binding variables.
A variable is said to be bound if it is contained in a lambda expression of the same variable binding.
Conversely a variable is free if it is not bound.

A term with free variables is said to be an open term while one without free variables is said to be closed
or a combinator.

e0 = λx.x

e1 = λx.(x(λy.ya)x)y

e0 is a combinator while e1 is not. In e1 both occurrences of x are bound. e first y is bound, while
the second is free. a is also free.

Multiple lambda abstractions may bind the same variable name. Each occurrence of a variable is then
bound by the nearest enclosing binder. For example, the x variable in the following expression is bound
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on the inner lambda, while y is bound on the outer lambda. is phenomenon is referred to as name
shadowing.

λxy.(λxz.x + y)

SKI Combinators

ere are three fundamental closed expressions called the SKI combinators.

S = λf.(λg.(λx.fx(gx)))
K = λx.λy.x

I = λx.x

In Haskell these are written simply:

s f g x = f x (g x)
k x y = x
i x = x

Rather remarkably Moses Schönfinkel showed that all closed lambda expressions can be expressed in
terms of only the S and K combinators - even the I combinator. For example one can easily show that
SKK reduces to I.

SKK
= ((λxyz.xz(yz))(λxy.x)(λxy.x))
= ((λyz.(λxy.x)z(yz))(λxy.x))
= λz.(λxy.x)z((λxy.x)z)
= λz.(λy.z)((λxy.x)z)
= λz.z

= I

is fact is a useful sanity check when testing an implementation of the lambda calculus.

Implementation

e simplest implementation of the lambda calculus syntax with named binders is the following defini-
tion.

type Name = String

data Expr
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= Var Name
| App Expr Expr
| Lam Name Expr

ere are several lexical syntax choices for lambda expressions, we will simply choose the Haskell con-
vention which denotes lambda by the backslash (\) to the body with (->), and application by spaces.
Named variables are simply alphanumeric sequences of characters.

• Logical notation: const = λxy.x
• Haskell notation: const = \x y -> x

In addition other terms like literal numbers or booleans can be added, and these make writing expository
examples a little easier. For these we will add a Lit constructor.

data Expr
= ...
| Lit Lit

data Lit
= LInt Int
| LBool Bool

Substitution

Evaluation of a lambda term ((λx.e)a) proceeds by substitution of all free occurrences of the variable
x in e with the argument a. A single substitution step is called a reduction. We write the substitution
application in brackets before the expression it is to be applied over, [x/a]e maps the variable x to the
new replacement a over the expression e.

(λx.e)a → [x/a]e

A substitution metavariable will be written as [s].

In detail, substitution is defined like this:

[x/a]x = a

[x/a]y = y if x ̸= y

[x/a]ee′ = ([x/a]e)([x/a]e′)
[x/a]λx.e = λx.e

[x/a]λy.e = λy.[x/a]e if x ̸= y and y /∈ fv(a)

where fv(e) is the set of free variables in e.
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e fundamental issue with using locally named binders is the problem of name capture, or how to
handle the case where a substitution conflicts with the names of free variables. We need the condition in
the last case to avoid the naive substitution that would fundamentally alter the meaning of the following
expression when y is rewritten to x.

[y/x](λx.xy) → λx.xx

By convention we will always use a capture-avoiding substitution. Substitution will only proceed if the
variable is not in the set of free variables of the expression, and if it does then a fresh variable will be
created in its place.

(λx.e)a → [x/a]e if x /∈ fv(a)

ere are several binding libraries and alternative implementations of the lambda calculus syntax that
avoid these problems. It is a very common problem and it is very easy to implement incorrectly even
for experts.

Conversion and Equivalences

Alpha equivalence

(λx.e) α= (λy.[x/y]e)

Alpha equivalence is the property ( when using named binders ) that changing the variable on the binder
and throughout the body of the expression should not change the fundamental meaning of the whole
expression. So for example the following are alpha-equivalent.

λxy.xy
α= λab.ab

Beta-reduction

Beta reduction is simply a single substitution step, replacing a variable bound by a lambda expression
with the argument to the lambda throughout the body of the expression.

(λx.a)y β→ [x/y]a

Eta-reduction

λx.ex
η→ e if x /∈ fv(e)

is is justified by the fact that if we apply both sides to a term, one step of beta reduction turns the
left side to the right side:
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(λx.ex)e′ β→ ee′ if x /∈ fv(e)

Eta-expansion

e opposite of eta reduction is eta-expansion, which takes a function that is not saturated and makes
all variables explicitly bound in a lambda. Eta-expansion will be important when we discuss translation
into STG.

Reduction

Evaluation of lambda calculus expressions proceeds by beta reduction. e variables bound in a lambda
are substituted across the body of the lambda. ere are several degrees of freedom in the design space
about how to do this, and in which order an expression should be evaluated. For instance we could
evaluate under the lambda and then substitute variables into it, or instead evaluate the arguments and
then substitute and then reduce the lambda expressions. More on this will be discussed in the section
on Evaluation models.

Untyped> (\x.x) 1
1

Untyped> (\x y . y) 1 2
2

Untyped> (\x y z. x z (y z)) (\x y . x) (\x y . x)
=> \x y z . (x z (y z))
=> \y z . ((\x y . x) z (y z))
=> \x y . x
=> \y . z

=> z
=> \z . z

\z . z

Note that the last evaluation was SKK which we encountered earlier.

In the untyped lambda calculus we can freely represent infinitely diverging expressions:

Untyped> \f . (f (\x . (f x x)) (\x . (f x x)))
\f . (f (\x . (f x x)) (\x . (f x x)))

Untyped> (\f . (\x. (f x x)) (\x. (f x x))) (\f x . f f)
...

Untyped> (\x. x x) (\x. x x)
...
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Let

In addition to application, a construct known as a let binding is often added to the lambda calculus
syntax. In the untyped lambda calculus, let bindings are semantically equivalent to applied lambda
expressions.

let a = e in b := (λa.b)e

In our languages we will write let statements like they appear in Haskell.

let a = e in b

Toplevel expressions will be written as let statements without a body to indicate that they are added
to the global scope. e Haskell language does not use this convention but OCaml, StandardML use
this convention. In Haskell the preceding let is simply omitted for toplevel declarations.

let S f g x = f x (g x);
let K x y = x;
let I x = x;

let skk = S K K;

For now the evaluation rule for let is identical to that of an applied lambda.

(λx.e)v → [x/v]e (E-Lam)
let x = v in e → [x/v]e (E-Let)

In later variations of the lambda calculus let expressions will have different semantics and will differ from
applied lambda expressions. More on this will be discussed in the section on Hindley-Milner inference.

Everything Can Be a λ term

• 0

• 1

• 2

• succ

• pred

• not

• and

• or

• add

• mul
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Recursion

Probably the most famous combinator is Curry’s Y combinator. Within an untyped lambda calculus,
Y can be used to allow an expression to contain a reference to itself and reduce on itself permitting
recursion and looping logic.

e Y combinator is one of many so called fixed point combinators.

Y = λR.(λx.(R(xx))λx.(R(xx)))

Y is quite special in that given R It returns the fixed point of R.

YR = λf.(λx.(f(xx))λx.(f(xx)))R
= (λx.(R(xx))λx.(R(xx)))
= R(λx.(R(xx))λx.(R(xx)))
= R Y R

For example the factorial function can be defined recursively in terms of repeated applications of itself
to fixpoint until the base case of 0!.

n! = n(n − 1)!

fac 0 = 1
fac n = R(fac) = R(R(fac))...

For fun one can prove that the Y-combinator can be expressed in terms of the S and K combinators.

Y = SSK(S(K(SS(S(SSK))))K)

In an untyped lambda calculus language without explicit fixpoint or recursive let bindings, the Y com-
binator can be used to create both of these constructs out of nothing but lambda expressions. However
it is more common to just add either an atomic fixpoint operator or a recursive let as a fundamental
construct in the term syntax.

e := x

e1 e2

λx.e

fix e

Where fix has the evaluation rule:

fix v → v (fix v)
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Together with the fixpoint (or the Y combinator) we can create let bindings which contain a reference
to itself within the body of the bound expression. We’ll call these recursive let bindings, they are written
as let rec in ML dialects. For now we will implement recursive lets as simply syntactic sugar for
wrapping a fixpoint around a lambda binding by the following equivalence.

let rec x = e1 in e2 = let x = fix (\x. e1) in e2

So for example we can now write down every functional programmer’s favorite two functions: facto-
rial and fibonacci. To show both styles, one is written with let rec and the other with explicit
fix.

let fact = fix (\fact -> \n ->
if (n == 0)
then 1
else (n * (fact (n-1))));

let rec fib n =
if (n == 0)
then 0
else if (n==1)
then 1
else ((fib (n-1)) + (fib (n-2)));

Omega Combinator

An important degenerate case that we’ll test is the omega combinator which applies a single argument
to itself.

ω = λx.xx

When we apply the ω combinator to itself we find that this results in an infinitely long repeating chain
of reductions. A sequence of reductions that has no normal form ( i.e. it reduces indefinitely ) is said to
diverge.

(λx.xx)(λx.xx) → (λx.xx)(λx.xx) → (λx.xx)(λx.xx) . . .

We’ll call this expression the Ω combinator. It is the canonical looping term in the lambda calculus.
Quite a few of our type systems which are statically typed will reject this term from being well-formed,
so it is quite a useful tool for testing.

Ω = ωω = (λx.xx)(λx.xx)
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Pretty Printing

Hackage provides quite a few pretty printer libraries that ease the process of dumping out textual forms
for our data types. Although there are some differences between the libraries most of them use the same
set of combinators. We will use the Text.PrettyPrint module from the pretty package on Hackage.
Most of our pretty printing will be unavoidable boilerplate but will make debugging internal state much
easier.

Combinators
<> Concatenation
<+> Spaced concatenation
char Renders a character as a Doc
text Renders a string as a Doc
hsep Horizontally concatenates a list of Doc
vcat Vertically joins a list of Doc with newlines

e core type of the pretty printer is the Doc type which is the abstract type of documents. Combinators
over this type will manipulate the internal structure of this document which is then finally reified to a
physical string using the render function. Since we intend to pretty print across multiple types we will
create a Pretty typeclass.

module Pretty where

import Text.PrettyPrint

class Pretty p where
ppr :: Int -> p -> Doc

pp :: p -> Doc
pp = ppr 0

First, we create two helper functions that collapse our lambda bindings so we can print them out as
single lambda expressions.

viewVars :: Expr -> [Name]
viewVars (Lam n a) = n : viewVars a
viewVars _ = []

viewBody :: Expr -> Expr
viewBody (Lam _ a) = viewBody a
viewBody x = x

en we create a helper function for parenthesizing subexpressions.
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parensIf :: Bool -> Doc -> Doc
parensIf True = parens
parensIf False = id

Finally, we define ppr. e p variable will indicate our depth within the current structure we’re printing
and allow us to print out differently to disambiguate it from its surroundings if necessary.

instance Pretty Expr where
ppr p e = case e of
Lit (LInt a) -> text (show a)
Lit (LBool b) -> text (show b)
Var x -> text x
App a b -> parensIf (p>0) $ (ppr (p+1) a) <+> (ppr p b)
Lam x a -> parensIf (p>0) $

char ’\\’
<> hsep (fmap pp (viewVars e))
<+> ”->”
<+> ppr (p+1) (viewBody e)

ppexpr :: Expr -> String
ppexpr = render . ppr 0

Full Source

• Untyped Lambda Calculus
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[A type system is a] tractable syntactic method for proving the absence of certain program behaviors
by classifying phrases according to the kinds of values they compute.
— Benjamin Pierce

Type Systems

Type systems are a formal language in which we can describe and restrict the semantics of a programming
language. e study of the subject is a rich and open area of research with many degrees of freedom in
the design space.

As stated in the introduction, this is a very large topic and we are only going to cover enough of it to get
through writing the type checker for our language, not the subject in its full generality. e classic text that
everyone reads is Types and Programming Languages or ( TAPL ) and discusses the topic more in depth.
In fact we will follow TAPL very closely with a bit of a Haskell flavor.

Rules

In the study of programming language semantics, logical statements are written in a specific logical
notation. A property, for our purposes, will be a fact about the type of a term. It is written with the
following notation:

1 : Nat

ese facts exist within a preset universe of discourse called a type system with definitions, properties,
conventions, and rules of logical deduction about types and terms. Within a given system, we will have
several properties about these terms. For example:

• (A1) 0 is a natural number.
• (A2) For a natural number n, succ(n) is a natural number.

Given several properties about natural numbers, we’ll use a notation that will allow us to chain them
together to form proofs about arbitrary terms in our system.

0 : Nat
(A1)

n : Nat
succ(n) : Nat

(A2)
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In this notation, the expression above the line is called the antecedent, and expression below the line is
called the conclusion. A rule with no antecedent is an axiom.
e variable n is metavariable standing for any natural number, an instance of a rule is a substitution of
values for these metavariables. A derivation is a tree of rules of finite depth. We write ⊢ C to indicate
that there exists a derivation whose conclusion is C, that C is provable.
For example ⊢ 2 : Nat by the derivation:

0 : Nat
(A1)

succ(0) : Nat
(A2)

succ(succ(0)) : Nat
(A2)

Also present in these derivations may be a typing context or typing environment written as Γ. e context
is a sequence of named variables mapped to properties about the named variable. e comma operator
for the context extends Γ by adding a new property on the right of the existing set. e empty context
is denoted ∅ and is the terminal element in this chain of properties that carries no information. So
contexts are defined by:

Γ ::= ∅
Γ, x : τ

Here is an example for a typing rule for addition using contexts:

Γ ⊢ e1 : Nat Γ ⊢ e2 : Nat
Γ ⊢ e1 + e2 : Nat

In the case where the property is always implied regardless of the context we will shorten the expression.
is is just a lexical convention.

∅ ⊢ P := ⊢ P

Type Safety

In the context of modeling the semantics of programming languages using this logical notation, we
often refer to two fundamental categories of rules of the semantics.

• Statics : Semantic descriptions which are derived from the syntax of the language.
• Dynamics : Semantics descriptions which describe the value evolution resulting from a program.

Type safety is defined to be the equivalence between the statics and the dynamics of the language. is
equivalence is modeled by two properties that relate the types and evaluation semantics:

• Progress : If an expression is well typed then either it is a value, or it can be further evaluated by
an available evaluation rule.

• Preservation : If an expression e has type τ , and is evaluated to e′, then e′ has type τ .
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Types

e word “type” is quite often overload in the common programming lexicon. Other languages often
refer to runtime tags present in the dynamics of the languages as “types”. Some examples:

# Python
>>> type(1)
<type ’int’>

# Javascript
> typeof(1)
’number’

# Ruby
irb(main):001:0> 1.class
=> Fixnum

# Julia
julia> typeof(1)
Int64

# Clojure
user=> (type 1)
java.lang.Long

While this is a perfectly acceptable alternative definition, we are not going to go that route and instead
restrict ourselves purely to the discussion of static types, in other words types which are known before
runtime. Under this set of definitions many so-called dynamically typed languages often only have a
single static type. For instance in Python all static types are subsumed by the PyObject and it is only
at runtime that the tag PyTypeObject *ob_type is discriminated on to give rise to the Python notion
of “types”. Again, this is not the kind of type we will discuss. e trade-offs that these languages make
is that they often have trivial static semantics while the dynamics for the language are often exceedingly
complicated. Languages like Haskell and OCaml are the opposite point in this design space.

Types will usually be written as τ and can consist of many different constructions to the point where the
type language may become as rich as the value level language. For now let’s only consider three simple
types, two ground types (Nat and Bool) and an arrow type.

τ ::= Bool
Nat
τ → τ

e arrow type will be the type of function expressions, the left argument being the input type and the
output type on the right. e arrow type will by convention associate to the right.

τ1 → τ2 → τ3 → τ4 = τ1 → (τ2 → (τ3 → τ4))
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In all the languages which we will implement the types present during compilation are erased. Although
types are possibly present in the evaluation semantics, the runtime cannot dispatch on types of values
at runtime. Types by definition only exist at compile-time in the static semantics of the language.

Small-Step Semantics

e real quantity we’re interested in formally describing is expressions in programming languages. A
programming language semantics is described by the operational semantics of the language. e oper-
ational semantics can be thought of as a description of an abstract machine which operates over the
abstract terms of the programming language in the same way that a virtual machine might operate over
instructions.

We use a framework called small-step semantics where a derivation shows how individual rewrites com-
pose to produce a term, which we can evaluate to a value through a sequence of state changes. is is a
framework for modeling aspects of the runtime behavior of the program before running it by describing
the space of possible transitions type and terms may take. Ultimately we’d like the term to transition
and terminate to a value in our language instead of becoming “stuck” as we encountered before.

Recall our little calculator language from before when we constructed our first parser:

data Expr
= Tr
| Fl
| IsZero Expr
| Succ Expr
| Pred Expr
| If Expr Expr Expr
| Zero

e expression syntax is as follows:

e ::= True
False
iszero e

succ e

pred e

if e then e else e

0

e small step evaluation semantics for this little language is uniquely defined by the following 9 rules.
ey describe each step that an expression may take during evaluation which may or may not terminate
and converge on a value.
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e1 → e2

succ e1 → succ e2
(E-Succ)

e1 → e2

pred e1 → pred e2
(E-Pred)

pred 0 → 0 (E-PredZero)

pred (succ n) → n (E-PredSucc)

e1 → e2

iszero e1 → iszero e2
(E-IsZero)

iszero 0 → true (E-IsZeroZero)

iszero (succ n) → false (E-IsZeroSucc)

if True then e2 else e3 → e2 (E-IfTrue)

if False then e2 else e3 → e3 (E-IfFalse)

e evaluation logic for our interpreter simply reduced an expression by the predefined evaluation rules
until either it reached a normal form ( a value ) or got stuck.

nf :: Expr -> Expr
nf t = fromMaybe t (nf <$> eval1 t)

eval :: Expr -> Maybe Expr
eval t = case isVal (nf t) of

True -> Just (nf t)
False -> Nothing -- term is ”stuck”

Values in our language are defined to be literal numbers or booleans.

isVal :: Expr -> Bool
isVal Tr = True
isVal Fl = True
isVal t | isNum t = True
isVal _ = False

Written in applicative form there is a noticeable correspondence between each of the evaluation rules
and our evaluation logic.

-- Evaluate a single step.
eval1 :: Expr -> Maybe Expr
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eval1 expr = case expr of
Succ t -> Succ <$> (eval1 t)
Pred Zero -> Just Zero
Pred (Succ t) | isNum t -> Just t
Pred t -> Pred <$> (eval1 t)
IsZero Zero -> Just Tr
IsZero (Succ t) | isNum t -> Just Fl
IsZero t -> IsZero <$> (eval1 t)
If Tr c _ -> Just c
If Fl _ a -> Just a
If t c a -> (\t’ -> If t’ c a) <$> eval1 t
_ -> Nothing

As we noticed before we could construct all sorts of pathological expressions that would become stuck.
Looking at the evaluation rules, each of the guarded pattern matches gives us a hint of where things
might “go wrong” whenever a boolean is used in the place of a number and vice versa. We’d like to
statically enforce this invariant at compile-time instead, and so we’ll introduce a small type system to
handle the two syntactic categories of terms that exist. In addition to the arrow type, we add the abstract
type of natural numbers and the type of booleans:

τ ::= Bool
Nat
τ → τ

Which is implemented in Haskell as the following datatype:

data Type
= TBool
| TNat
| TArr Type Type

Now for the typing rules:
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e1 : Nat
succ e1 : Nat

(T-Succ)

e1 : Nat
pred e1 : Nat

(T-Pred)

e1 : Nat
iszero e1 : Bool

(T-IsZero)

0 : Nat (T-Zero)

True : Bool (T-True)

False : Bool (T-False)

e1 : Bool e2 : τ e3 : τ

if e1 then e2 else e3 : τ
(T-If)

ese rules restrict the space of all possible programs. It is more involved to show, but this system has
both progress and preservation as well. If a term is now well-typed it will always evaluate to a value and
cannot “go wrong” at evaluation.

To check the well-formedness of an expression we implement a piece of logic known as type checker
which determines whether the term has a well-defined type in terms of typing rules, and if so returns it
or fails with an exception in the case where it does not.

type Check a = Except TypeError a

data TypeError
= TypeMismatch Type Type

check :: Expr -> Either TypeError Type
check = runExcept . typeof

typeof :: Expr -> Check Type
typeof expr = case expr of

Succ a -> do
ta <- typeof a
case ta of

TNat -> return TNat
_ -> throwError $ TypeMismatch ta TNat

Pred a -> do
ta <- typeof a
case ta of
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TNat -> return TNat
_ -> throwError $ TypeMismatch ta TNat

IsZero a -> do
ta <- typeof a
case ta of

TNat -> return TBool
_ -> throwError $ TypeMismatch ta TNat

If a b c -> do
ta <- typeof a
tb <- typeof b
tc <- typeof c
if ta /= TBool
then throwError $ TypeMismatch ta TBool
else

if tb /= tc
then throwError $ TypeMismatch ta tb
else return tc

Tr -> return TBool
Fl -> return TBool
Zero -> return TNat

Observations

e pathological stuck terms that we encountered previously in our untyped language are now com-
pletely inexpressive and are rejected at compile-time.

Arith> succ 0
succ 0 : Nat

Arith> succ (succ 0)
succ (succ 0) : Nat

Arith> if false then true else false
false : Bool

Arith> iszero (pred (succ (succ 0)))
false : Bool

Arith> pred (succ 0)
0 : Nat

Arith> iszero false
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Type Mismatch: Bool is not Nat

Arith> if 0 then true else false
Type Mismatch: Nat is not Bool

is is good, we’ve made a whole class of illegal programs unrepresentable. Lets do more of this!

Simply Typed Lambda Calculus

e simply typed lambda calculus ( STLC ) of Church and Curry is an extension of the lambda calculus
that annotates each lambda binder with a type term. e STLC is explictly typed, all types are present
directly on the binders and to determine the type of any variable in scope we only need to traverse to
its enclosing scope.

e := x

e1 e2

λx : τ.e

e simplest STLC language is these three terms, however we will add numeric and boolean literal
terms so that we can write meaningful examples.

e := x

e1 e2

λx : τ.e

n

true
false
if e then e else e

We can consider a very simple type system for our language that will consist of Int and Bool types and
function types.

τ := Int
Bool
τ → τ

Type Checker

e typing rules are quite simple, and again we get the nice property that there is a one-to-one mapping
between each syntax term and a typing rule.
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• T-Var Variables are simply pulled from the context.
• T-Lam lambdas introduce a typed variable into the environment when inferring the body.
• T-App Applications of a lambda with type t1 -> t2 to a value of type t1 yields a value of type
t2.

x : σ ∈ Γ
Γ ⊢ x : σ

(T-Var)

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx : τ1.e : τ1 → τ2
(T-Lam)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1e2 : τ2
(T-App)

Γ ⊢ c : Bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if c then e1 else e2 : τ
(T-If)

Γ ⊢ n : Int (T-Int)

Γ ⊢ True : Bool (T-True)

Γ ⊢ False : Bool (T-False)

e evaluation rules describe the nature by which values transition between other values and determine
the runtime behavior of the program.

e1 → e′
1

e1e2 → e′
1e2

(E-App1)

e2 → e′
2

v1e2 → v1e′
2

(E-App2)

(λx : τ.e1)v2 → [x/v2]e1 (E-AppLam)

if True then e2 else e3 → e2 (E-IfTrue)

if False then e2 else e3 → e3 (E-IfFalse)

e1 → e′
1

if e1 then e2 else e3 → if e′
1 then e2 else e3

(E-If)

Since we now have the notion of scoped variables for lambda, we will implement a typing environment
Env as manifest as Γ in our typing rules.
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type Env = [(Name, Type)]

extend :: (Name, Type) -> Env -> Env
extend xt env = xt : env

inEnv :: (Name, Type) -> Check a -> Check a
inEnv (x,t) = local (extend (x,t))

lookupVar :: Name -> Check Type
lookupVar x = do

env <- ask
case lookup x env of
Just e -> return e
Nothing -> throwError $ NotInScope x

e typechecker will be a ExceptT + Reader monad transformer stack, with the reader holding the
typing environment. ere are three possible failure modes for our simply typed lambda calculus type-
checker:

• e case when we try to unify two unlike types.
• e case when we try to apply a non-function to an argument.
• e case when a variable is referred to that is not in scope.

data TypeError
= Mismatch Type Type
| NotFunction Type
| NotInScope Name

type Check = ExceptT TypeError (Reader Env)

ere is a direct equivalence between syntax patterns here and the equivalent typing judgement for it.
is will not always be the case in general though. e implementation of the type checker is as follows:

check :: Expr -> Check Type
check expr = case expr of

Lit (LInt{}) -> return TInt

Lit (LBool{}) -> return TBool

Lam x t e -> do
rhs <- inEnv (x,t) (check e)
return (TArr t rhs)

App e1 e2 -> do
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t1 <- check e1
t2 <- check e2
case t1 of

(TArr a b) | a == t2 -> return b
| otherwise -> throwError $ Mismatch t2 a

ty -> throwError $ NotFunction ty

Var x -> lookupVar x

Evaluation

Fundamentally the evaluation of the typed lambda calculus is no different than the untyped lambda
calculus, nor could it be since the syntactic addition of types is purely a static construction and cannot
have any manifestation at runtime by definition. e only difference is that the simply typed lambda
calculus admits strictly less programs than the untyped lambda calculus.

e foundational idea in compilation of static typed languages is that a typed program can be trans-
formed into an untyped program by erasing type information but preserving the evaluation semantics
of the typed program. If our program has type safety then it can never “go wrong” at runtime.

Of course the converse is not true, programs that do not “go wrong” are not necessarily well-typed,
although whether we can prove whether a non well-typed program cannot go wrong is an orthogonal
issue. e game that we as statically typed language implementors play is fundamentally one of re-
striction: we take the space of all programs and draw a large line around the universe of discourse of
programs that we are willing to consider, since these are the only programs that we can prove properties
for.

Well-typed programs don’t go wrong, but not every program that never goes wrong is well-typed.
It’s easy to exhibit programs that don’t go wrong but are ill-typed in … any … decidable type
system. Many such programs are useful, which is why dynamically-typed languages like Erlang
and Lisp are justly popular.
— Simon Peyton Jones

Power always comes at a price. Using one system you can do more things. In another you can say
more about the things a program can do. e fundamental art in the discipline of language design is
balancing the two to find the right power-to-weight ratio.

Observations

Some examples to try:

Stlc> (\x : Int . \y : Int . y) 1 2
2
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Stlc> (\x : (Int -> Int). x) (\x : Int . 1) 2
1

Stlc> (\x : Int . x) False
Couldn’t match expected type ’Int’ with actual type: ’Bool’

Stlc> 1 2
Tried to apply to non-function type: Int

Stlc> (\x : Int . (\y : Int . x))
<<closure>>

Notation Reference

e notation introduced here will be used throughout the construction of the Haskell compiler. For
reference here is a list of each of the notational conventions we will use. Some of these terms are not
yet introduced.

Notation Convention
{a, b, c} Set
α Vector
e : τ Type judgement
P (x) Predicate
P (x) : Q(x) Conditional
P ⊢ Q Implication
α, β Type variables
Γ Type context
x, y, z Expression variables
e Expression metavariable
τ Type metavariable
κ Kind metavariable
σ Type scheme metavariable
C Type constraint
τ1 ∼ τ2 Unification constraint
[τ/α] Substitution
s Substitution metavariable
[s]τ Substitution application
τ1 → τ2 Function type
C ⇒ τ Qualified type
τ1 × τ2 Product type
τ1 + τ2 Sum type
⊥ Bottom type
∀α.τ Universal quantifier
∃α.τ Existential quantifier
Nat, Bool Ground type
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Full Source

• Typed Arithmetic
• Simply Typed Lambda Calculus
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Well-typed programs cannot “go wrong”.
— Robin Milner

Evaluation

While the lambda calculus is exceedingly simple, there is a great deal of variety in ways to evaluate
and implement the reduction of lambda expressions. e different models for evaluation are evaluation
stratgies.

ere is a bifurcation between two points in the design space: strict and non-strict evaluation. An
evaluation strategy is strict if the arguments to a lambda expression are necessarily evaluated before a
lambda is reduced. A language in which the arguments are not necessarily evaluated before a lambda is
reduced is non-strict.

Alternatively expressed, diverging terms are represented up to equivalence by the bottom value, written
as ⊥. A function f is non-strict if:

f⊥ ̸= ⊥

Evaluation Models

ere are many different models, and various hybrids thereof. We will consider three dominant models:

• Call-by-value: arguments are evaluated before a function is entered
• Call-by-name: arguments are passed unevaluated
• Call-by-need: arguments are passed unevaluated but an expression is only evaluated once and

shared upon subsequent references

Given an expression fx the reduction in different evaluation models proceeds differently:

Call-by-value:

1. Evaluate x to v
2. Evaluate f to λy.e
3. Evaluate [y/v]e

Call-by-name:
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1. Evaluate f to λy.e
2. Evaluate [y/x]e

Call-by-need :

1. Allocate a thunk v for x
2. Evaluate f to λy.e
3. Evaluate [y/v]e

Terms that have a normal form in one model, may or may not have a normal form in another. In
call-by-need and call-by-name evaluation diverging terms are not necessarily evaluated before entry, so
some terms that have a normal form in these models may diverge under call-by-value.

Call-by-value

Call by value is an extremely common evaluation model. Many programming languages both imperative
and functional use this evaluation strategy. e essence of call-by-value is that there are two categories
of expressions: terms and values. Values are lambda expressions and other terms which are in normal
form and cannot be reduced further. All arguments to a function will be reduced to normal form before
they are bound inside the lambda and reduction only proceeds once the arguments are reduced.

For a simple arithmetic expression, the reduction proceeds as follows. Notice how the subexpression (2
+ 2) is evaluated to normal form before being bound.

(\x. \y. y x) (2 + 2) (\x. x + 1)
=> (\x. \y. y x) 4 (\x. x + 1)
=> (\y. y 4) (\x. x + 1)
=> (\x. x + 1) 4
=> 4 + 1
=> 5

Naturally there are two evaluation rules for applications.

e1 → e′
1

e1e2 → e′
1e2

(E-App1)

e2 → e′
2

v1e2 → v1e′
2

(E-App2)

(λx.e)v → [x/v]e (E-AppLam)

For a simple little lambda calculus the call-by-value interpreter is quite simple. Part of the runtime eval-
uation of lambda calculus involves the creation of closures, environments which hold the local variables
in scope. In our little language there are two possible values which reduction may converge on, VInt
and VClosure.
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data Expr
= Var Int
| Lam Expr
| App Expr Expr
| Lit Int
| Prim PrimOp Expr Expr
deriving Show

data PrimOp = Add | Mul
deriving Show

data Value
= VInt Int
| VClosure Expr Env
deriving Show

type Env = [Value]

emptyEnv :: Env
emptyEnv = []

e evaluator function simply maps the local scope and a term to the final value. Whenever a variable is
referred to it is looked up in the environment. Whenever a lambda is entered it extends the environment
with the local scope of the closure.

eval :: Env -> Expr -> Value
eval env term = case term of

Var n -> env !! n
Lam a -> VClosure a env
App a b ->
let VClosure c env’ = eval env a in
let v = eval env b in
eval (v : env’) c

Lit n -> VInt n
Prim p a b -> (evalPrim p) (eval env a) (eval env b)

evalPrim :: PrimOp -> Value -> Value -> Value
evalPrim Add (VInt a) (VInt b) = VInt (a + b)
evalPrim Mul (VInt a) (VInt b) = VInt (a * b)

Call-by-name

In call-by-name evaluation, the arguments to lambda expressions are substituted as is, evaluation simply
proceeds from left to right substituting the outermost lambda or reducing a value. If a substituted
expression is not used it is never evaluated.
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e1 → e′
1

e1e2 → e′
1e2

(E-App)

(λx.e1)e2 → [x/e2]e1 (E-AppLam)

For example, the same expression we looked at for call-by-value has the same normal form but arrives
at it by a different sequence of reductions:

(\x. \y. y x) (2 + 2) (\x. x + 1)
=> (\y. y (2 + 2)) (\x. x + 1)
=> (\x. x + 1) (2 + 2)
=> (2 + 2) + 1
=> 4 + 1
=> 5

Call-by-name is non-strict, although very few languages use this model.

Call-by-need

Call-by-need is a special type of non-strict evaluation in which unevaluated expressions are represented
by suspensions or thunks which are passed into a function unevaluated and only evaluated when needed
or forced. When the thunk is forced the representation of the thunk is updated with the computed value
and is not recomputed upon further reference.

e thunks for unevaluated lambda expressions are allocated when evaluated, and the resulting com-
puted value is placed in the same reference so that subsequent computations share the result. If the
argument is never needed it is never computed, which results in a trade-off between space and time.

Since the evaluation of subexpression does not follow any pre-defined order, any impure functions with
side-effects will be evaluated in an unspecified order. As a result call-by-need can only effectively be
implemented in a purely functional setting.

type Thunk = () -> IO Value

data Value
= VBool Bool
| VInt Integer
| VClosure (Thunk -> IO Value)

update :: IORef Thunk -> Value -> IO ()
update ref v = do

writeIORef ref (\() -> return v)
return ()
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force :: IORef Thunk -> IO Value
force ref = do

th <- readIORef ref
v <- th ()
update ref v
return v

mkThunk :: Env -> String -> Expr -> (Thunk -> IO Value)
mkThunk env x body = \a -> do

a’ <- newIORef a
eval ((x, a’) : env) body

eval :: Env -> Expr -> IO Value
eval env ex = case ex of

EVar n -> do
th <- lookupEnv env n
v <- force th
return v

ELam x e -> return $ VClosure (mkThunk env x e)

EApp a b -> do
VClosure c <- eval env a
c (\() -> eval env b)

EBool b -> return $ VBool b
EInt n -> return $ VInt n
EFix e -> eval env (EApp e (EFix e))

For example, in this model the following program will not diverge since the omega combinator passed
into the constant function is not used and therefore the argument is not evaluated.

omega = (\x -> x x) (\x -> x x)
test1 = (\y -> 42) omega

omega :: Expr
omega = EApp (ELam ”x” (EApp (EVar ”x”) (EVar ”x”)))

(ELam ”x” (EApp (EVar ”x”) (EVar ”x”)))

test1 :: IO Value
test1 = eval [] $ EApp (ELam ”y” (EInt 42)) omega

Higher Order Abstract Syntax (HOAS)

GHC Haskell being a rich language has a variety of extensions that, among other things, allow us to
map lambda expressions in our defined language directly onto lambda expressions in Haskell. In this
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case we will use a GADT to embed a Haskell expression inside our expression type.

{-# LANGUAGE GADTs #-}

data Expr a where
Lift :: a -> Expr a
Tup :: Expr a -> Expr b -> Expr (a, b)
Lam :: (Expr a -> Expr b) -> Expr (a -> b)
App :: Expr (a -> b) -> Expr a -> Expr b
Fix :: Expr (a -> a) -> Expr a

e most notable feature of this encoding is that there is no distinct constructor for variables. Instead
they are simply values in the host language. Some example expressions:

id :: Expr (a -> a)
id = Lam (\x -> x)

tr :: Expr (a -> b -> a)
tr = Lam (\x -> (Lam (\y -> x)))

fl :: Expr (a -> b -> b)
fl = Lam (\x -> (Lam (\y -> y)))

Our evaluator then simply uses Haskell for evaluation.

eval :: Expr a -> a
eval (Lift v) = v
eval (Tup e1 e2) = (eval e1, eval e2)
eval (Lam f) = \x -> eval (f (Lift x))
eval (App e1 e2) = (eval e1) (eval e2)
eval (Fix f) = (eval f) (eval (Fix f))

Some examples of use:

fact :: Expr (Integer -> Integer)
fact =

Fix (
Lam (\f ->

Lam (\y ->
Lift (
if eval y == 0
then 1
else eval y * (eval f) (eval y - 1)))))
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test :: Integer
test = eval fact 10

main :: IO ()
main = print test

Several caveats must be taken when working with HOAS. First of all, it takes more work to transform
expressions in this form since in order to work with the expression we would need to reach under the
lambda binder of a Haskell function itself. Since all the machinery is wrapped up inside of Haskell’s
implementation even simple operations like pretty printing and writing transformation passes can be
more difficult. is form is a good form for evaluation, but not for transformation.

Parametric Higher Order Abstract Syntax (PHOAS)

A slightly different form of HOAS called PHOAS uses a lambda representation parameterized over the
binder type under an existential type.

{-# LANGUAGE RankNTypes #-}

data ExprP a
= VarP a
| AppP (ExprP a) (ExprP a)
| LamP (a -> ExprP a)
| LitP Integer

newtype Expr = Expr { unExpr :: forall a . ExprP a }

e lambda in our language is simply a lambda within Haskell. As an example, the usual SK combina-
tors would be written as follows:

-- i x = x
i :: ExprP a
i = LamP (\a -> VarP a)

-- k x y = x
k :: ExprP a
k = LamP (\x -> LamP (\y -> VarP x))

-- s f g x = f x (g x)
s :: ExprP a
s =

LamP (\f ->
LamP (\g ->

LamP (\x ->
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AppP
(AppP (VarP f) (VarP x))
(AppP (VarP g) (VarP x))

)))

Evaluation will result in a runtime Value type, just as before with our outer interpreters. We will use
several “extractor” functions which use incomplete patterns under the hood. e model itself does not
prevent malformed programs from blowing up here, and so it is necessary to guarantee that the program
is sound before evaluation. Normally this would be guaranteed at a higher level by a typechecker before
even reaching this point.

data Value
= VLit Integer
| VFun (Value -> Value)

fromVFun :: Value -> (Value -> Value)
fromVFun val = case val of

VFun f -> f
_ -> error ”not a function”

fromVLit :: Value -> Integer
fromVLit val = case val of

VLit n -> n
_ -> error ”not an integer”

Evaluation simply exploits the fact that nestled up under our existential type is just a Haskell function
and so we get all the name capture, closures and binding machinery for free. e evaluation logic for
PHOAS model is extremely short.

eval :: Expr -> Value
eval e = ev (unExpr e) where

ev (LamP f) = VFun(ev . f)
ev (VarP v) = v
ev (AppP e1 e2) = fromVFun (ev e1) (ev e2)
ev (LitP n) = VLit n

Consider the S K K = I example again and check the result:

skk :: ExprP a
skk = AppP (AppP s k) k

example :: Integer
example = fromVLit $ eval $ Expr (AppP skk (LitP 3))

We will use this evaluation technique extensively in writing interpreters for our larger languages. It is
an extremely convenient and useful method for writing interpreters in Haskell.
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Embedding IO

As mentioned before, effects are first class values in Haskell.

In Haskell we don’t read from a file directly, but create a value that represents reading from a file. is
allows us to very cleanly model an interpreter for our language inside of Haskell by establishing a map-
ping between the base operations of our language and existing function implementations of the standard
operations in Haskell, and using monadic operations to build up a pure effectful computation as a result
of interpretation. After evaluation, we finally lift the resulting IO value into Haskell and execute the
results. is fits in nicely with the PHOAS model and allows us to efficiently implement a fully-fledged
interpreter for our language with remarkably little code, simply by exploiting Haskell’s implementation.

To embed IO actions inside of our interpreter we create a distinct VEffect value that will build up a
sequenced IO computation during evaluation. is value will be passed off to Haskell and reified into
real world effects.

data ExprP a
= VarP a
| GlobalP Name
| AppP (ExprP a) (ExprP a)
| LamP (a -> ExprP a)
| LitP Char
| EffectP a

data Value
= VChar Char
| VFun (Value -> Value)
| VEffect (IO Value)
| VUnit

fromVEff :: Value -> (IO Value)
fromVEff val = case val of

VEffect f -> f
_ -> error ”not an effect”

eval :: Expr -> Value
eval e = ev (unExpr e) where

ev (LamP f) = VFun(ev . f)
ev (AppP e1 e2) = fromVFun (ev e1) (ev e2)
ev (LitP n) = VChar n
ev (EffectP v) = v
ev (VarP v) = v
ev (GlobalP op) = prim op

-- Lift an effect from our language into Haskell IO.
run :: Expr -> IO ()
run f = void (fromVEff (eval f))
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e prim function will simply perform a lookup on the set of builtin operations, which we’ll define
with a bit of syntactic sugar for wrapping up Haskell functions.

unary :: (Value -> Value) -> Value
unary f = lam $ \a -> f a

binary :: (Value -> Value -> Value) -> Value
binary f = lam $ \a ->

lam $ \b -> f a b

prim :: Name -> Value
prim op = case op of
”putChar#” -> unary $ \x ->

VEffect $ do
putChar (fromVChar x)
return VUnit

”getChar#” -> VEffect $ do
val <- getChar
return (VChar val)

”bindIO#” -> binary $ \x y -> bindIO x y
”returnIO#” -> unary $ \x -> returnIO x
”thenIO#” -> binary $ \x y -> thenIO x y

For example thenIO# sequences effects in our language will simply squash two VEffect objects into
one composite effect building up a new VEffect value that is using Haskell’s monadic sequencing on
the internal IO value.

bindIO :: Value -> Value -> Value
bindIO (VEffect f) (VFun g) = VEffect (f >>= fromVEff . g)

thenIO :: Value -> Value -> Value
thenIO (VEffect f) (VEffect g) = VEffect (f >> g)

returnIO :: Value -> Value
returnIO a = VEffect $ return a

Effectively we’re just recreating the same conceptual relationship that Haskell IO has with its runtime,
but instead our host language uses Haskell as the runtime!

Full Source

Evaluation
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• Call-by-value
• Call-by-need

Higher Order Interpreters

• HOAS
• PHOAS
• Embedding IO
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ere is nothing more practical than a good theory.
— James C. Maxwell

Hindley-Milner Inference

e Hindley-Milner type system ( also referred to as Damas-Hindley-Milner or HM ) is a family of
type systems that admit the serendipitous property of having a tractable algorithm for determining
types from untyped syntax. is is achieved by a process known as unification, whereby the types for a
well-structured program give rise to a set of constraints that when solved always have a unique principal
type.

e simplest Hindley Milner type system is defined by a very short set of rules. e first four rules
describe the judgements by which we can map each syntactic construct (Lam, App, Var, Let) to their
expected types. We’ll elaborate on these rules shortly.

x : σ ∈ Γ
Γ ⊢ x : σ

(T-Var)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
(T-App)

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λ x . e : τ1 → τ2
(T-Lam)

Γ ⊢ e1 : σ Γ, x : σ ⊢ e2 : τ

Γ ⊢ let x = e1 in e2 : τ
(T-Let)

Γ ⊢ e : σ α /∈ ftv(Γ)
Γ ⊢ e : ∀ α . σ

(T-Gen)

Γ ⊢ e : σ1 σ1 ⊑ σ2

Γ ⊢ e : σ2
(T-Inst)

Milner’s observation was that since the typing rules map uniquely onto syntax, we can in effect run the
typing rules “backwards” and whenever we don’t have a known type for a subexpression, we “guess” by
putting a fresh variable in its place, collecting constraints about its usage induced by subsequent typing
judgements. is is the essence of type inference in the ML family of languages, that by the generation
and solving of a class of unification problems we can reconstruct the types uniquely from the syntax.
e algorithm itself is largely just the structured use of a unification solver.
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However full type inference leaves us in a bit a bind, since while the problem of inference is tractable
within this simple language and trivial extensions thereof, but nearly any major addition to the language
destroys the ability to infer types unaided by annotation or severely complicates the inference algorithm.
Nevertheless the Hindley-Milner family represents a very useful, productive “sweet spot” in the design
space.

Syntax

e syntax of our first type inferred language will effectively be an extension of our untyped lambda
calculus, with fixpoint operator, booleans, integers, let, and a few basic arithmetic operations.

type Name = String

data Expr
= Var Name
| App Expr Expr
| Lam Name Expr
| Let Name Expr Expr
| Lit Lit
| If Expr Expr Expr
| Fix Expr
| Op Binop Expr Expr
deriving (Show, Eq, Ord)

data Lit
= LInt Integer
| LBool Bool
deriving (Show, Eq, Ord)

data Binop = Add | Sub | Mul | Eql
deriving (Eq, Ord, Show)

data Program = Program [Decl] Expr deriving Eq

type Decl = (String, Expr)

e parser is trivial, the only addition will be the toplevel let declarations (Decl) which are joined into
the global Program. All toplevel declarations must be terminated with a semicolon, although they can
span multiple lines and whitespace is ignored. So for instance:

-- SKI combinators
let I x = x;
let K x y = x;
let S f g x = f x (g x);

82



As before let rec expressions will expand out in terms of the fixpoint operator and are just syntactic
sugar.

Polymorphism

We will add an additional constructs to our language that will admit a new form of polymorphism for
our language. Polymorphism is the property of a term to simultaneously admit several distinct types
for the same function implementation.

For instance the polymorphic signature for the identity function maps an input of type α

id :: ∀α.α → α

id = λx : α. x

Now instead of having to duplicate the functionality for every possible type (i.e. implementing idInt,
idBool, …) we our type system admits any instantiation that is subsumed by the polymorphic type
signature.

idInt = Int → Int
idBool = Bool → Bool

A rather remarkably fact of universal quantification is that many properties about inhabitants of a type
are guaranteed by construction, these are the so-called free theorems. For instance any (nonpathological)
inhabitant of the type (a, b) -> a must be equivalent to fst.

A slightly less trivial example is that of the fmap function of type Functor f => (a -> b) -> f a
-> f b. e second functor law demands that:

forall f g. fmap f . fmap g = fmap (f . g)

However it is impossible to write down a (nonpathological) function for fmap that has the required
type and doesn’t have this property. We get the theorem for free!

Types

e type language we’ll use starts with the simple type system we used for our typed lambda calculus.

newtype TVar = TV String
deriving (Show, Eq, Ord)

data Type
= TVar TVar
| TCon String
| TArr Type Type
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deriving (Show, Eq, Ord)

typeInt, typeBool :: Type
typeInt = TCon ”Int”
typeBool = TCon ”Bool”

Type schemes model polymorphic types, they indicate that the type variables bound in quantifier are
polymorphic across the enclosed type and can be instantiated with any type consistent with the signature.
Intuitively the indicate that the implementation of the function

data Scheme = Forall [TVar] Type

Type schemes will be written as σ in our typing rules.

σ ::= τ

∀α.τ

For example the id and the const functions would have the following types:

id : ∀a.a → a

const : ∀ab.a → b → a

We’ve now divided our types into two syntactic categories, themonotypes and the polytypes. In our simple
initial languages type schemes will always be the representation of top level signature, even if there are
no polymorphic type variables. In implementation terms this means when a monotype is yielded from
our Infer monad after inference, we will immediately generalize it at the toplevel closing over all free type
variables in a type scheme.

Context

e typing context or environment is the central container around which all information during the in-
ference process is stored and queried. In Haskell our implementation will simply be a newtype wrapper
around a Map of Var to Scheme types.

newtype TypeEnv = TypeEnv (Map.Map Var Scheme)

e two primary operations are extension and restriction which introduce or remove named quantities
from the context.

Γ\x = {y : σ|y : σ ∈ Γ, x ̸= y}

Γ, x : τ = (Γ\x) ∪ {x : τ}

Operations over the context are simply the usual Set operations on the underlying map.
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extend :: TypeEnv -> (Var, Scheme) -> TypeEnv
extend (TypeEnv env) (x, s) = TypeEnv $ Map.insert x s env

Inference Monad

All our logic for type inference will live inside of the Infer monad. It is a monad transformer stack of
ExcpetT + State, allowing various error reporting and statefully holding the fresh name supply.

type Infer a = ExceptT TypeError (State Unique) a

Running the logic in the monad results in either a type error or a resulting type scheme.

runInfer :: Infer (Subst, Type) -> Either TypeError Scheme
runInfer m = case evalState (runExceptT m) initUnique of

Left err -> Left err
Right res -> Right $ closeOver res

Substitution

Two operations that will perform quite a bit are querying the free variables of an expression and applying
substitutions over expressions.

fv(x) = x

fv(λx.e) = fv(e) − {x}
fv(e1e2) = fv(e1) ∪ fv(e2)

e same pattern applies to type variables at the type level.

ftv(α) = {α}
ftv(τ1 → τ2) = ftv(τ1) ∪ ftv(τ2)

ftv(Int) = ∅
ftv(Bool) = ∅
ftv(∀x.t) = ftv(t) − {x}

Substitutions over expressions apply the substitution to local variables, replacing the named subexpres-
sion if matched. In the case of name capture a fresh variable is introduced.

[x/e′]x = e′

[x/e′]y = y (y ̸= x)
[x/e′](e1e2) = ([x/e′] e1)([x/e′]e2)

[x/e′](λy.e1) = λy.[x/e′]e y ̸= x, y /∈ fv(e′)
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And likewise, substitutions can be applied element wise over the typing environment.

[t/s]Γ = {y : [t/s]σ | y : σ ∈ Γ}

Our implementation of a substitution in Haskell is simply a Map from type variables to types.

type Subst = Map.Map TVar Type

Composition of substitutions ( s1 ◦ s2, s1 ‘compose‘ s2 ) can be encoded simply as operations over
the underlying map. Importantly note that in our implementation we have chosen the substitution to
be left-biased, it is up to the implementation of the inference algorithm to ensure that clashes do not
occur between substitutions.

nullSubst :: Subst
nullSubst = Map.empty

compose :: Subst -> Subst -> Subst
s1 ‘compose‘ s2 = Map.map (apply s1) s2 ‘Map.union‘ s1

e implementation in Haskell is via a series of implementations of a Substitutable typeclass which
exposes an apply function which applies the substitution given over the structure of the type replacing
type variables as specified.

class Substitutable a where
apply :: Subst -> a -> a
ftv :: a -> Set.Set TVar

instance Substitutable Type where
apply _ (TCon a) = TCon a
apply s t@(TVar a) = Map.findWithDefault t a s
apply s (t1 ‘TArr‘ t2) = apply s t1 ‘TArr‘ apply s t2

ftv TCon{} = Set.empty
ftv (TVar a) = Set.singleton a
ftv (t1 ‘TArr‘ t2) = ftv t1 ‘Set.union‘ ftv t2

instance Substitutable Scheme where
apply s (Forall as t) = Forall as $ apply s’ t

where s’ = foldr Map.delete s as
ftv (Forall as t) = ftv t ‘Set.difference‘ Set.fromList as

instance Substitutable a => Substitutable [a] where
apply = fmap . apply
ftv = foldr (Set.union . ftv) Set.empty
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instance Substitutable TypeEnv where
apply s (TypeEnv env) = TypeEnv $ Map.map (apply s) env
ftv (TypeEnv env) = ftv $ Map.elems env

roughout both the typing rules and substitutions we will require a fresh supply of names. In this
naive version we will simply use an infinite list of strings and slice into n’th element of list per an index
that we hold in a State monad. is is a simplest implementation possible, and later we will adapt this
name generation technique to be more robust.

letters :: [String]
letters = [1..] >>= flip replicateM [’a’..’z’]

fresh :: Infer Type
fresh = do

s <- get
put s{count = count s + 1}
return $ TVar $ TV (letters !! count s)

e creation of fresh variables will be essential for implementing the inference rules. Whenever we
encounter the first use of a variable within some expression we will create a fresh type variable.

Unification

Central to the idea of inference is the notion of unification. A unifier for two expressions e1 and e2 is a
substitution s such that:

s := [n0/m0, n1/m1, ..., nk/mk][s]e1 = [s]e2

Two terms are said to be unifiable if there exists a unifying substitution set between them. A substitution
set is said to be confluent if the application of substitutions is independent of the order applied, i.e. if
we always arrive at the same normal form regardless of the order of substitution chosen.

We’ll adopt the notation

τ ∼ τ ′ : s

for the fact that two types τ, τ ′ are unifiable by a substitution s, such that:

[s]τ = [s]τ ′

Two identical terms are trivially unifiable by the empty unifier.

c ∼ c : [ ]
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e unification rules for our little HM language are as follows:

c ∼ c : [] (Uni-Const)

α ∼ α : [] (Uni-Var)

α /∈ ftv(τ)
α ∼ τ : [α/τ ]

(Uni-VarLeft)

α /∈ ftv(τ)
τ ∼ α : [α/τ ]

(Uni-VarRight)

τ1 ∼ τ ′
1 : θ1 [θ1]τ2 ∼ [θ1]τ ′

2 : θ2

τ1τ2 ∼ τ ′
1τ ′

2 : θ2 ◦ θ1
(Uni-Con)

τ1 ∼ τ ′
1 : θ1 [θ1]τ2 ∼ [θ1]τ ′

2 : θ2

τ1 → τ2 ∼ τ ′
1 → τ ′

2 : θ2 ◦ θ1
(Uni-Arrow)

If we want to unify a type variable α with a type τ , we usually can just substitute the variable with the
type: [α/τ ]. However, our rules state a precondition known as the occurs check for that unification: the
type variable α must not occur free in τ . If it did, the substitution would not be a unifier.

Take for example the problem of unifying α and α → β. e substitution s = [α/α → β] doesn’t unify:
we get

[s]α = α → β

and
[s]α → β = (α → β) → β.

Indeed, whatever substitution s we try, [s]α → β will always be longer than [s]α, so no unifier exists.
e only chance would be to substitute with an infinite type: [α/(. . . ((α → β) → β) → · · · → β) → β]
would be a unifier, but our language has no such types.

If the unification fails because of the occurs check, we say that unification would give an infinite type.

Note that unifying α → β and α is exactly what we would have to do if we tried to type check the omega
combinator λx.xx, so it is ruled out by the occurs check, as are other pathological terms we discussed
when covering the untyped lambda calculus.

occursCheck :: Substitutable a => TVar -> a -> Bool
occursCheck a t = a ‘Set.member‘ ftv t

e unify function lives in the Infer monad and yields a subsitution:

unify :: Type -> Type -> Infer Subst
unify (l ‘TArr‘ r) (l’ ‘TArr‘ r’) = do
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s1 <- unify l l’
s2 <- unify (apply s1 r) (apply s1 r’)
return (s2 ‘compose‘ s1)

unify (TVar a) t = bind a t
unify t (TVar a) = bind a t
unify (TCon a) (TCon b) | a == b = return nullSubst
unify t1 t2 = throwError $ UnificationFail t1 t2

bind :: TVar -> Type -> Infer Subst
bind a t | t == TVar a = return nullSubst

| occursCheck a t = throwError $ InfiniteType a t
| otherwise = return $ Map.singleton a t

Generalization and Instantiation

At the heart of Hindley-Milner is two fundamental operations:

• Generalization: Converting a τ type into a σ type by closing over all free type variables in a type
scheme.

• Instantiation: Converting a σ type into a τ type by creating fresh names for each type variable
that does not appear in the current typing environment.

Γ ⊢ e : σ α /∈ ftv(Γ)
Γ ⊢ e : ∀ α . σ

(T-Gen)

Γ ⊢ e : σ1 σ1 ⊑ σ2

Γ ⊢ e : σ2
(T-Inst)

e ⊑ operator in the (T-Inst) rule indicates that a type is an instantiation of a type scheme.

∀α.τ2 ⊑ τ1

A type τ1 is a instantiation of a type scheme σ = ∀α.τ2 if there exists a substitution [s]β = β for all
β ∈ ftv(σ) so that τ1 = [s]τ2. Some examples:

∀a.a → a ⊑ Int → Int
∀a.a → a ⊑ b → b

∀ab.a → b → a ⊑ Int → Bool → Int

ese map very intuitively into code that simply manipulates the Haskell Set objects of variables and
the fresh name supply:
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instantiate :: Scheme -> Infer Type
instantiate (Forall as t) = do

as’ <- mapM (const fresh) as
let s = Map.fromList $ zip as as’
return $ apply s t

generalize :: TypeEnv -> Type -> Scheme
generalize env t = Forall as t

where as = Set.toList $ ftv t ‘Set.difference‘ ftv env

By convention let-bindings are generalized as much as possible. So for instance in the following defi-
nition f is generalized across the body of the binding so that at each invocation of f it is instantiated
with fresh type variables.

Poly> let f = (\x -> x) in let g = (f True) in f 3
3 : Int

In this expression, the type of f is generated at the let definition and will be instantiated with two
different signatures. At call site of f it will unify with Int and the other unify with Bool.

By contrast, binding f in a lambda will result in a type error.

Poly> (\f -> let g = (f True) in (f 3)) (\x -> x)
Cannot unify types:

Bool
with

Int

is is the essence of let generalization.

Typing Rules

And finally with all the typing machinery in place, we can write down the typing rules for our simple
little polymorphic lambda calculus.

infer :: TypeEnv -> Expr -> Infer (Subst, Type)

e infer maps the local typing environment and the active expression to a 2-tuple of the partial
unifier solution and the intermediate type. e AST is traversed bottom-up and constraints are solved
at each level of recursion by applying partial substitutions from unification across each partially inferred
subexpression and the local environment. If an error is encountered the throwError is called in the
Infer monad and an error is reported.
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infer :: TypeEnv -> Expr -> Infer (Subst, Type)
infer env ex = case ex of

Var x -> lookupEnv env x

Lam x e -> do
tv <- fresh
let env’ = env ‘extend‘ (x, Forall [] tv)
(s1, t1) <- infer env’ e
return (s1, apply s1 tv ‘TArr‘ t1)

App e1 e2 -> do
tv <- fresh
(s1, t1) <- infer env e1
(s2, t2) <- infer (apply s1 env) e2
s3 <- unify (apply s2 t1) (TArr t2 tv)
return (s3 ‘compose‘ s2 ‘compose‘ s1, apply s3 tv)

Let x e1 e2 -> do
(s1, t1) <- infer env e1
let env’ = apply s1 env

t’ = generalize env’ t1
(s2, t2) <- infer (env’ ‘extend‘ (x, t’)) e2
return (s1 ‘compose‘ s2, t2)

If cond tr fl -> do
(s1, t1) <- infer env cond
(s2, t2) <- infer env tr
(s3, t3) <- infer env fl
s4 <- unify t1 typeBool
s5 <- unify t2 t3
return (s5 ‘compose‘ s4 ‘compose‘ s3 ‘compose‘ s2 ‘compose‘ s1, apply s5 t2)

Fix e1 -> do
(s1, t) <- infer env e1
tv <- fresh
s2 <- unify (TArr tv tv) t
return (s2, apply s1 tv)

Op op e1 e2 -> do
(s1, t1) <- infer env e1
(s2, t2) <- infer env e2
tv <- fresh
s3 <- unify (TArr t1 (TArr t2 tv)) (ops Map.! op)
return (s1 ‘compose‘ s2 ‘compose‘ s3, apply s3 tv)
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Lit (LInt _) -> return (nullSubst, typeInt)
Lit (LBool _) -> return (nullSubst, typeBool)

Let’s walk through each of the rule derivations and look how it translates into code:

T-Var

e T-Var rule, simply pull the type of the variable out of the typing context.

Var x -> lookupEnv env x

e function lookupVar looks up the local variable reference in typing environment and if found it
instantiates a fresh copy.

lookupEnv :: TypeEnv -> Var -> Infer (Subst, Type)
lookupEnv (TypeEnv env) x = do

case Map.lookup x env of
Nothing -> throwError $ UnboundVariable (show x)
Just s -> do t <- instantiate s

return (nullSubst, t)

x : σ ∈ Γ
Γ ⊢ x : σ

(T-Var)

T-Lam

For lambdas the variable bound by the lambda is locally scoped to the typing environment and then
the body of the expression is inferred with this scope. e output type is a fresh type variable and is
unified with the resulting inferred type.

Lam x e -> do
tv <- fresh
let env’ = env ‘extend‘ (x, Forall [] tv)
(s1, t1) <- infer env’ e
return (s1, apply s1 tv ‘TArr‘ t1)

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λ x . e : τ1 → τ2
(T-Lam)

T-App

For applications, the first argument must be a lambda expression or return a lambda expression, so know
it must be of form t1 -> t2 but the output type is not determined except by the confluence of the
two values. We infer both types, apply the constraints from the first argument over the result second
inferred type and then unify the two types with the excepted form of the entire application expression.
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App e1 e2 -> do
tv <- fresh
(s1, t1) <- infer env e1
(s2, t2) <- infer (apply s1 env) e2
s3 <- unify (apply s2 t1) (TArr t2 tv)
return (s3 ‘compose‘ s2 ‘compose‘ s1, apply s3 tv)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
(T-App)

T-Let

As mentioned previously, let will be generalized so we will create a local typing environment for the body
of the let expression and add the generalized inferred type let bound value to the typing environment
of the body.

Let x e1 e2 -> do
(s1, t1) <- infer env e1
let env’ = apply s1 env

t’ = generalize env’ t1
(s2, t2) <- infer (env’ ‘extend‘ (x, t’)) e2
return (s1 ‘compose‘ s2, t2)

Γ ⊢ e1 : σ Γ, x : σ ⊢ e2 : τ

Γ ⊢ let x = e1 in e2 : τ
(T-Let)

T-BinOp

ere are several builtin operations, we haven’t mentioned up to now because the typing rules are trivial.
We simply unify with the preset type signature of the operation.

Op op e1 e2 -> do
(s1, t1) <- infer env e1
(s2, t2) <- infer env e2
tv <- fresh
s3 <- unify (TArr t1 (TArr t2 tv)) (ops Map.! op)
return (s1 ‘compose‘ s2 ‘compose‘ s3, apply s3 tv)

ops :: Map.Map Binop Type
ops = Map.fromList [

(Add, (typeInt ‘TArr‘ (typeInt ‘TArr‘ typeInt)))
, (Mul, (typeInt ‘TArr‘ (typeInt ‘TArr‘ typeInt)))
, (Sub, (typeInt ‘TArr‘ (typeInt ‘TArr‘ typeInt)))
, (Eql, (typeInt ‘TArr‘ (typeInt ‘TArr‘ typeBool)))

]
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(+) : Int → Int → Int
(×) : Int → Int → Int
(−) : Int → Int → Int
(=) : Int → Int → Bool

Literals

e type of literal integer and boolean types is trivially their respective types.

Γ ⊢ n : Int
(T-Int)

Γ ⊢ True : Bool
(T-True)

Γ ⊢ False : Bool
(T-False)

Constraint Generation

e previous implementation of Hindley Milner is simple, but has this odd property of intermingling
two separate processes: constraint solving and traversal. Let’s discuss another implementation of the
inference algorithm that does not do this.

In the constraint generation approach, constraints are generated by bottom-up traversal, added to a
ordered container, canonicalized, solved, and then possibly back-substituted over a typed AST. is
will be the approach we will use from here out, and while there is an equivalence between the “on-line
solver”, using the separate constraint solver becomes easier to manage as our type system gets more
complex and we start building out the language.

Our inference monad now becomes a RWST ( Reader-Writer-State Transformer ) + Except for typing
errors. e inference state remains the same, just the fresh name supply.

-- | Inference monad
type Infer a = (RWST

Env -- Typing environment
[Constraint] -- Generated constraints
InferState -- Inference state
(Except -- Inference errors

TypeError)
a) -- Result

-- | Inference state
data InferState = InferState { count :: Int }

Instead of unifying type variables at each level of traversal, we will instead just collect the unifiers inside
the Writer and emit them with the uni function.
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-- | Unify two types
uni :: Type -> Type -> Infer ()
uni t1 t2 = tell [(t1, t2)]

Since the typing environment is stored in the Reader monad, we can use the local to create a locally
scoped additions to the typing environment. is is convenient for typing binders.

-- | Extend type environment
inEnv :: (Name, Scheme) -> Infer a -> Infer a
inEnv (x, sc) m = do

let scope e = (remove e x) ‘extend‘ (x, sc)
local scope m

Typing

e typing rules are identical, except they now can be written down in a much less noisy way that isn’t
threading so much state. All of the details are taken care of under the hood and encoded in specific
combinators manipulating the state of our Infer monad in a way that lets focus on the domain logic.

infer :: Expr -> Infer Type
infer expr = case expr of

Lit (LInt _) -> return $ typeInt
Lit (LBool _) -> return $ typeBool

Var x -> lookupEnv x

Lam x e -> do
tv <- fresh
t <- inEnv (x, Forall [] tv) (infer e)
return (tv ‘TArr‘ t)

App e1 e2 -> do
t1 <- infer e1
t2 <- infer e2
tv <- fresh
uni t1 (t2 ‘TArr‘ tv)
return tv

Let x e1 e2 -> do
env <- ask
t1 <- infer e1
let sc = generalize env t1
t2 <- inEnv (x, sc) (infer e2)
return t2
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Fix e1 -> do
t1 <- infer e1
tv <- fresh
uni (tv ‘TArr‘ tv) t1
return tv

Op op e1 e2 -> do
t1 <- infer e1
t2 <- infer e2
tv <- fresh
let u1 = t1 ‘TArr‘ (t2 ‘TArr‘ tv)

u2 = ops Map.! op
uni u1 u2
return tv

If cond tr fl -> do
t1 <- infer cond
t2 <- infer tr
t3 <- infer fl
uni t1 typeBool
uni t2 t3
return t2

Constraint Solver

e Writer layer for the Infer monad contains the generated set of constraints emitted from inference
pass. Once inference has completed we are left with a resulting type signature full of meaningless unique
fresh variables and a set of constraints that we must solve to refine the type down to its principal type.

e constraints are pulled out solved by a separate Solve monad which holds the Unifier ( most general
unifier ) solution that when applied to generated signature will yield the solution.

type Constraint = (Type, Type)

type Unifier = (Subst, [Constraint])

-- | Constraint solver monad
type Solve a = StateT Unifier (ExceptT TypeError Identity) a

e unification logic is also identical to before, except it is now written independent of inference and
stores its partial state inside of the Solve monad’s state layer.

unifies :: Type -> Type -> Solve Unifier
unifies t1 t2 | t1 == t2 = return emptyUnifer
unifies (TVar v) t = v ‘bind‘ t
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unifies t (TVar v) = v ‘bind‘ t
unifies (TArr t1 t2) (TArr t3 t4) = unifyMany [t1, t2] [t3, t4]
unifies t1 t2 = throwError $ UnificationFail t1 t2

unifyMany :: [Type] -> [Type] -> Solve Unifier
unifyMany [] [] = return emptyUnifer
unifyMany (t1 : ts1) (t2 : ts2) =

do (su1,cs1) <- unifies t1 t2
(su2,cs2) <- unifyMany (apply su1 ts1) (apply su1 ts2)
return (su2 ‘compose‘ su1, cs1 ++ cs2)

unifyMany t1 t2 = throwError $ UnificationMismatch t1 t2

e solver function simply iterates over the set of constraints, composing them and applying the re-
sulting constraint solution over the intermediate solution eventually converting on the most general
unifier which yields the final subsitution which when applied over the inferred type signature, yields
the principal type solution for the expression.

-- Unification solver
solver :: Solve Subst
solver = do

(su, cs) <- get
case cs of
[] -> return su
((t1, t2): cs0) -> do

(su1, cs1) <- unifies t1 t2
put (su1 ‘compose‘ su, cs1 ++ (apply su1 cs0))
solver

is a much more elegant solution than having to intermingle inference and solving in the same pass,
and adapts itself well to the generation of a typed Core form which we will discuss in later chapters.

Worked Examples

Let’s walk through two examples of how inference works for simple functions.

Example 1

Consider:

\x y z -> x + y + z

e generated type from the infer function consists simply of a fresh variable for each of the arguments
and the return type.

a -> b -> c -> e
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e constraints induced from T-BinOp are emitted as we traverse both of the addition operations.

1. a -> b -> d ~ Int -> Int -> Int
2. d -> c -> e ~ Int -> Int -> Int

Here d is the type of the intermediate term x + y. By applying Uni-Arrow we can then deduce the
following set of substitutions.

1. a ~ Int
2. b ~ Int
3. c ~ Int
4. d ~ Int
5. e ~ Int

Substituting this solution back over the type yields the inferred type:

Int -> Int -> Int -> Int

Example 2

compose f g x = f (g x)

e generated type from the infer function consists again simply of unique fresh variables.

a -> b -> c -> e

Induced by two cases of the T-App rule we get the following constraints:

1. b ~ c -> d
2. a ~ d -> e

Here d is the type of (g x). e constraints are already in a canonical form, by applying Uni-VarLeft
twice we get the following set of substitutions:

1. b ~ c -> d
2. a ~ d -> e

So we get this type:

compose :: forall c d e. (d -> e) -> (c -> d) -> c -> e

If desired, we can rename the variables in alphabetical order to get:

compose :: forall a b c. (a -> b) -> (c -> a) -> c -> b
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Interpreter

Our evaluator will operate directly on the syntax and evaluate the results in into a Value type.

data Value
= VInt Integer
| VBool Bool
| VClosure String Expr TermEnv

e interpreter is set up an Identity monad. Later it will become a more complicated monad, but for
now its quite simple. e value environment will explicitly threaded around, and whenever a closure is
created we simply store a copy of the local environment in the closure.

type TermEnv = Map.Map String Value
type Interpreter t = Identity t

Our logic for evaluation is an extension of the lambda calculus evaluator implemented in previous
chapter. However you might notice quite a few incomplete patterns used throughout evaluation. Fear
not though, the evaluation of our program cannot “go wrong”. Each of these patterns represents a state
that our type system guarantees will never happen. For example, if our program did have not every
variable referenced in scope then it would never reach evaluation to begin with and would be rejected
in our type checker. We are morally correct in using incomplete patterns here!

eval :: TermEnv -> Expr -> Interpreter Value
eval env expr = case expr of

Lit (LInt k) -> return $ VInt k
Lit (LBool k) -> return $ VBool k

Var x -> do
let Just v = Map.lookup x env
return v

Op op a b -> do
VInt a’ <- eval env a
VInt b’ <- eval env b
return $ (binop op) a’ b’

Lam x body ->
return (VClosure x body env)

App fun arg -> do
VClosure x body clo <- eval env fun
argv <- eval env arg
let nenv = Map.insert x argv clo
eval nenv body
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Let x e body -> do
e’ <- eval env e
let nenv = Map.insert x e’ env
eval nenv body

If cond tr fl -> do
VBool br <- eval env cond
if br == True
then eval env tr
else eval env fl

Fix e -> do
eval env (App e (Fix e))

binop :: Binop -> Integer -> Integer -> Value
binop Add a b = VInt $ a + b
binop Mul a b = VInt $ a * b
binop Sub a b = VInt $ a - b
binop Eql a b = VBool $ a == b

Interactive Shell

Our language has now grown out the small little shells we were using before, and now we need something
much more robust to hold the logic for our interactive interpreter.

We will structure our REPL as a monad wrapped around IState (the interpreter state) datatype. We will
start to use the repline library from here out which gives us platform independent readline, history, and
tab completion support.

data IState = IState
{ tyctx :: TypeEnv -- Type environment
, tmctx :: TermEnv -- Value environment
}

initState :: IState
initState = IState emptyTyenv emptyTmenv

type Repl a = HaskelineT (StateT IState IO) a

hoistErr :: Show e => Either e a -> Repl a
hoistErr (Right val) = return val
hoistErr (Left err) = do

liftIO $ print err
abort
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Our language can be compiled into a standalone binary by GHC:

$ ghc --make Main.hs -o poly
$ ./poly
Poly>

At the top of our program we will look at the command options and allow three variations of commands.

$ poly # launch shell
$ poly input.ml # launch shell with ’input.ml’ loaded
$ poly test input.ml # dump test for ’input.ml’ to stdout

main :: IO ()
main = do

args <- getArgs
case args of
[] -> shell (return ())
[fname] -> shell (load [fname])
[”test”, fname] -> shell (load [fname] >> browse [] >> quit ())
_ -> putStrLn ”invalid arguments”

e shell command takes a pre action which is run before the shell starts up. e logic simply evaluates
our Repl monad into an IO and runs that from the main function.

shell :: Repl a -> IO ()
shell pre

= flip evalStateT initState
$ evalRepl ”Poly> ” cmd options completer pre

e cmd driver is the main entry point for our program, it is executed every time the user enters a line
of input. e first argument is the line of user input.

cmd :: String -> Repl ()
cmd source = exec True (L.pack source)

e heart of our language is then the exec function which imports all the compiler passes, runs them
sequentially threading the inputs and outputs and eventually yielding a resulting typing environment
and the evaluated result of the program. ese are monoidally joined into the state of the interpreter
and then the loop yields to the next set of inputs.

exec :: Bool -> L.Text -> Repl ()
exec update source = do

-- Get the current interpreter state
st <- get
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-- Parser ( returns AST )
mod <- hoistErr $ parseModule ”<stdin>” source

-- Type Inference ( returns Typing Environment )
tyctx’ <- hoistErr $ inferTop (tyctx st) mod

-- Create the new environment
let st’ = st { tmctx = foldl’ evalDef (tmctx st) mod

, tyctx = tyctx’ <> (tyctx st)
}

-- Update the interpreter state
when update (put st’)

Repline also supports adding special casing certain sets of inputs so that they map to builtin commands
in the compiler. We will implement three of these.

Command Action
:browse Browse the type signatures for a program
:load <file> Load a program from file
:type Show the type of an expression
:quit Exit interpreter

eir implementations are mostly straightforward.

options :: [(String, [String] -> Repl ())]
options = [

(”load” , load)
, (”browse” , browse)
, (”quit” , quit)
, (”type” , Main.typeof)
]

-- :browse command
browse :: [String] -> Repl ()
browse _ = do

st <- get
liftIO $ mapM_ putStrLn $ ppenv (tyctx st)

-- :load command
load :: [String] -> Repl ()
load args = do

contents <- liftIO $ L.readFile (unwords args)
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exec True contents

-- :type command
typeof :: [String] -> Repl ()
typeof args = do

st <- get
let arg = unwords args
case Infer.typeof (tyctx st) arg of
Just val -> liftIO $ putStrLn $ ppsignature (arg, val)
Nothing -> exec False (L.pack arg)

-- :quit command
quit :: a -> Repl ()
quit _ = liftIO $ exitSuccess

Finally tab completion for our shell will use the interpreter’s typing environment keys to complete on
the set of locally defined variables. Repline supports prefix based tab completion where the prefix of the
current command will be used to determine what to tab complete. In the case where we start with the
command :load we will instead tab complete on filenames in the current working directly instead.

completer :: CompleterStyle (StateT IState IO)
completer = Prefix (wordCompleter comp) defaultMatcher

-- Prefix tab completer
defaultMatcher :: MonadIO m => [(String, CompletionFunc m)]
defaultMatcher = [

(”:load” , fileCompleter)
]

-- Default tab completer
comp :: (Monad m, MonadState IState m) => WordCompleter m
comp n = do

let cmds = [”:load”, ”:browse”, ”:quit”, ”:type”]
TypeEnv ctx <- gets tyctx
let defs = Map.keys ctx
return $ filter (isPrefixOf n) (cmds ++ defs)

Observations

ere we have it, our first little type inferred language! Load the poly interpreter by running ghci
Main.hs and the call the main function.

$ ghci Main.hs
�: main
Poly> :load test.ml
Poly> :browse
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Try out some simple examples by declaring some functions at the toplevel of the program. We can
query the types of expressions interactively using the :type command which effectively just runs the
expression halfway through the pipeline and halts after typechecking.

Poly> let id x = x
Poly> let const x y = x
Poly> let twice x = x + x

Poly> :type id
id : forall a. a -> a

Poly> :type const
const : forall a b. a -> b -> a

Poly> :type twice
twice : Int -> Int

Notice several important facts. Our type checker will now flat our reject programs with scoping errors
before interpretation.

Poly> \x -> y
Not in scope: ”y”

Also programs that are also not well-typed are now rejected outright as well.

Poly> 1 + True
Cannot unify types:

Bool
with

Int

e omega combinator will not pass the occurs check.

Poly> \x -> x x
Cannot construct the the infinite type: a = a -> b

e file test.ml provides a variety of tests of the little interpreter. For instance both fact and fib
functions uses the fixpoint to compute Fibonacci numbers or factorials.

let fact = fix (\fact -> \n ->
if (n == 0)
then 1
else (n * (fact (n-1))));
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let rec fib n =
if (n == 0)
then 0
else if (n==1)

then 1
else ((fib (n-1)) + (fib (n-2)));

Poly> :type fact
fact : Int -> Int

Poly> fact 5
120

Poly> fib 16
610

Full Source

• Poly
• Poly - Constraint Generation
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Design of ProtoHaskell

Now that we’ve completed our simple little ML language, let’s discuss the road ahead toward building
a more complex language we’ll call ProtoHaskell that will eventually become the full Fun language.

Language Chapters Description
Poly 1 - 8 Minimal type inferred ML-like language.
ProtoHaskell 8 - 18 Interpreted minimal Haskell subset.
Fun 18 - 27 ProtoHaskell with native code generator.

e defining feature of ProtoHaskell is that it is independent of an evaluation model, so hypothetically
one could write either a lazy or a strict backend and use the same frontend.

Before we launch into writing compiler passes let’s look at the overview of where we’re going, the scope
of what we’re going to do, and what needs to be done to get there. We will refer to concepts that are not yet
introduced, so keep in mind this is meant to be a high-level overview of the ProtoHaskell compiler pipeline.

Haskell: A Rich Language

Haskell itself is a beautifully simple language at its core, although the implementation of GHC is ar-
guably anything but simple! e more one digs into the implementation the more it becomes apparent
that a lot of care and forethought was given to making the frontend language as expressive as it is. Many
of these details require a great detail of engineering work to make them work as seamlessly as they do.

Consider this simple Haskell example but note how much of an extension this is from our simple little
ML interpreter.

filter :: (a -> Bool) -> [a] -> [a]
filter pred [] = []
filter pred (x:xs)

| pred x = x : filter pred xs
| otherwise = filter pred xs

Consider all the things that are going on just in this simple example.

• Lazy evaluation
• Custom datatypes
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• Higher order functions
• Parametric polymorphism
• Function definition by pattern matching
• Pattern matching desugaring
• Guards to distinguish sub-cases
• Type signature must subsume inferred type
• List syntactic sugar ( value/pattern syntax )

Clearly we’re going to need a much more sophisticated design, and we’ll likely be doing quite a bit more
bookkeeping about our program during compilation.

Scope

Considering our project is intended to be a simple toy language, we are not going to implement all
of Haskell 2010. Doing so in its entirety would actually be a fairly involved effort. However we will
implement a sizable chunk of the functionality, certainly enough to write non-trivial programs and
implement most of the standard Prelude.

ings we will implement:

• Indentation sensitive grammar
• Pattern matching
• Algebraic datatypes
• Where statements
• Recursive functions/datatypes
• Operator sections
• Implicit let-rec
• List and tuple sugar
• Records
• Custom operators
• Do-notation
• Type annotations
• Monadic IO
• Typeclasses
• Arithmetic primops
• Type synonyms
• List comprehensions

ings we will not implement are:

• Overloaded literals
• GADTs
• Polymorphic recursion
• Any GHC-specific language extensions.
• Newtypes
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• Module namespaces
• Operator parameters
• Defaulting rules
• Exceptions
• Parallelism
• Software Transactional Memory
• Foreign Function Interface

Now if one feels so inclined one could of course implement these features on top of our final language,
but they are left as an exercise to the reader!

is of course begs the question of whether or not our language is “a Haskell”. In the strictest sense, it
will not be since it doesn’t fully conform to either the Haskell 98 or Haskell 2010 language specifications.
However in terms of the colloquial usage of the term Haskell, there does seem to be some growing feeling
that the “Haskell language family” does exist as a definable subset of the functional programming design
space, although many people disagree what its defining features are. In this sense we will most certainly
be writing a language in the Haskell family.

Intermediate Forms

e passes between each of the phases make up the main compilation pipeline .

For ProtoHaskell our pipeline consists of the transitions between four intermediate forms of the program.

• e Source, the textual representation of the program from a file or user input. is is stored in
a Text type.

• e Frontend source, the untyped AST generated from the parser.
• e Core, the explicitly typed, desugared form of the program generated after type inference.
• e PHOAS, the type-erased Core is transformed into Haskell expressions by mapping lambda

expressions in our language directly into Haskell lambda expressions and then evaluated using the
Haskell runtime.
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Pass Rep Haskell Type
Parsing Source Text.Text
Desugaring Frontend Frontend.Expr
Typechecking Core Core.Expr
Evaluation PHOAS CoreEval.ExprP

For our later Fun language our pipeline builds on top of the ProtoHaskell but instead of going to an
interpreter it will be compiled into native code through the native code generator (on top of LLVM)
and compiled into a binary executable or evaluated by a just-in-time (JIT) compiler.

Pass Rep Haskell Type
Parsing Source Text.Text
Desugaring Frontend Frontend.Expr
Typechecking Core Core.Expr
Transformation STG STG.Expr
Transformation Imp Imp.Expr
Code Generation LLVM LLVM.General.Module

Compiler Monad

e main driver of the compiler will be a ExceptT + State + IO transformer stack . All other passes and
transformations in the compiler will hang off of this monad, which encapsulates the main compilation
pipeline.

type CompilerMonad =
ExceptT Msg
(StateT CompilerState IO)

data CompilerState = CompilerState
{ _fname :: Maybe FilePath -- ^ File path
, _imports :: [FilePath] -- ^ Loaded modules
, _src :: Maybe L.Text -- ^ File source
, _ast :: Maybe Syn.Module -- ^ Frontend AST
, _tenv :: Env.Env -- ^ Typing environment
, _kenv :: Map.Map Name Kind -- ^ Kind environment
, _cenv :: ClassEnv.ClassEnv -- ^ Typeclass environment
, _cast :: Maybe Core.Module -- ^ Core AST
, _flags :: Flags.Flags -- ^ Compiler flags
, _venv :: CoreEval.ValEnv Core.Expr -- ^ Core interpreter environment
, _denv :: DataEnv.DataEnv -- ^ Entity dictionary
, _clenv :: ClassEnv.ClassHier -- ^ Typeclass hierarchy
} deriving (Eq, Show)
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e compiler itself will have several entry points, expr for interactive evaluation that expects an expres-
sion object and joins it into accumulated interactive environment. And modl path that compile whole
modules.

roughout the next 10 chapters we will incrementally create a series of transformations with the fol-
lowing type signatures.

parseP :: FilePath -> L.Text -> CompilerM Syn.Module
dataP :: Syn.Module -> CompilerM Syn.Module
groupP :: Syn.Module -> CompilerM Syn.Module
renameP :: Syn.Module -> CompilerM Syn.Module
desugarP :: Syn.Module -> CompilerM Syn.Module
inferP :: Syn.Module -> CompilerM Core.Module
evalP :: Core.Module -> CompilerM ()

e code path for modl is then simply the passes composed with the Kleisli composition operator to
form the composite pipeline for compiling modules.

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c

And that’s basically the entire structure of the compiler. It’s just a pipeline of monadic actions for each
pass rolled up inside of CompilerM.

modl :: FilePath -> L.Text -> CompilerM ()
modl fname

= parseP fname
>=> dataP
>=> groupP
>=> renameP
>=> desugarP
>=> inferP
>=> evalP

Engineering Overview

REPL

It is important to have an interactive shell to be able to interactively explore the compilation steps and
intermediate forms for arbitrary expressions. GHCi does this very well, and nearly every intermediate
form is inspectable. We will endeavor to recreate this experience with our toy language.

If the ProtoHaskell compiler is invoked either in GHCi or as standalone executable, you will see a
similar interactive shell.
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_ _ _ | ProtoHaskell Compiler 0.1.0
| | | | __ _ ___| | __ | Copyright (c) 2013-2015 Stephen Diehl
| |_| |/ _‘ / __| |/ / | Released under the MIT License
| _ | (_| \__ \ < |
|_| |_|\__,_|___/_|\_\ | Type :help for help

Compiling module: prelude.fun
> id (1+2)
3
> :type (>>=)
(>>=) :: Monad m => m a -> (a -> m b) -> m b
> :set -ddump-rn
> :load test.fun

Command line conventions will follow GHCi’s naming conventions. ere will be a strong emphasis
on building debugging systems on top of our architecture so that when subtle bugs creep up you will
have the tools to diagnose the internal state of the type system and detect flaws in the implementation.

Command Action
:browse Browse the type signatures for a program
:load <file> Load a program from file
:reload Run the active file
:edit Edit the active file in system editor
:core Show the core of an expression or program
:module Show active modules imports
:source Show the source code of an expression or program
:type Show the type of an expression
:kind Show the kind of an expression
:set <flag> Set a flag
:unset <flag> Unset a flag
:constraints Dump the typing constraints for an expression
:quit Exit interpreter

e most notable difference is the very important :core command which will dump out the core repre-
sentation of any expression given in the interactive shell. Another one is the :constraints command
which will interactively walk you through the type checker’s reasoning about how it derived the type it
did for a given expression.

> :type plus
plus :: forall a. Num a => a -> a -> a

> :core id
id :: forall a. a -> a
id = \(ds1 : a) -> a
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> :core compose
compose :: forall c d e. (d -> e) -> (c -> d) -> c -> e
compose = \(ds1 : d -> e)

(ds2 : c -> d)
(ds3 : c) ->
(ds1 (ds2 ds3))

e flags we use also resemble GHC’s and allow dumping out the pretty printed form of each of the
intermediate transformation passes.

• -ddump-parsed
• -ddump-desugar
• -ddump-rn
• -ddump-infer
• -ddump-core
• -ddump-types
• -ddump-stg
• -ddump-imp
• -ddump-c
• -ddump-llvm
• -ddump-asm
• -ddump-to-file

e implementation of the interactive shell will use a custom library called repline , which is a higher-
level wrapper on top of haskeline made to be more pleasant when writing interactive shells.

Parser

We will use the normal Parsec parser with a few extensions. We will add indentation sensitive parsing
so that block syntax ( where statements, let statements, do-notation ) can be parsed.

main :: IO ()
main = do

putStrLn msg
where
msg = ”Hello World”

We will also need to allow the addition of infix operators from user-defined declarations, and allow this
information to be used during parsing.

infixl 6 +
infixl 7 *

f = 1 + 2 * 3
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Renamer

After parsing we will traverse the entire AST and rename all user-named variables to machine generated
names and eliminate any name-shadowing. For example in the following ambiguous binder will replace
the duplicate occurrence of x with a fresh name.

f x y = \g x -> x + y -- x in definition of g shadows x in f
f x y = \g a0 -> a0 + y

We will also devise a general method of generating fresh names for each pass such that the names
generated are uniquely relatable to that pass and cannot conflict with later passes.
Ensuring that all names are unique in the syntax tree will allow us more safety later on during program
transformation, to know that names cannot implicitly capture and the program can be transformed
without changing its meaning.

Datatypes

User defined data declarations need to be handled and added to the typing context so that their use
throughout the program logic can be typechecked. is will also lead us into the construction of a
simple kind inference system, and the support of higher-kinded types.

data Bool = False | True
data Maybe a = Nothing | Just a
data T1 f a = T1 (f a)

Each constructor definition will also introduce several constructor functions into the Core representa-
tion of the module. Record types will also be supported and will expand out into selectors for each of
the various fields.

Desugaring

Pattern matching is an extremely important part of a modern functional programming language, but
the implementation of the pattern desugaring is remarkably subtle. e frontend syntax allows the
expression of nested pattern matches and incomplete patterns, both can generate very complex splitting
trees of case expressions that need to be expanded out recursively.
Multiple Equations

For instance the following toplevel pattern for the xor function is transformed into the following nested
set of case statements:

-- Frontend
xor False False = False;
xor False True = True;
xor True False = True;
xor True True = False;
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-- Desugared
xor :: Bool -> Bool -> Bool
xor = \_a _b -> case _a of {

False -> case _b of {
False -> False;
True -> True

};
True -> case _b of {

False -> True;
True -> False

}
}

Constructor Patterns

Toplevel declarations in the frontend language can consist of patterns for on the right-hand-side of the
declaration, while in the Core language these are transformed into case statements in the body of the
function.

-- Frontend
f (Left l) = a
f (Right r) = b

-- Desugared
f x = case x of

Left l -> a
Right r -> b

Nested Patterns

e frontend language also allows nested constructors in a single pattern, while in the Core language
these are expanded out into two case statements which scrutinize only one level of pattern.

-- Frontend
f x = case x of

Just (Just y) -> y

-- Desugared
f x = case x of

Just _a -> case _a of
Just _b -> _b

ere are many edge cases of pattern matching that we will have to consider. e confluence of all them
gives rise to a rather complex set of AST rewrites:

• Multiple arguments
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• Overlapping patterns
• Literal patterns
• Nested patterns
• Non-exhaustive equations
• Conditional equations
• Non-linear patterns

On top of pattern matching we will implement the following more trivial syntactic sugar translations:

• Expand if/then statements into case expressions.
• Expand pattern guards into case expressions.
• Expand out do-notation for monads.
• Expand list syntactic sugar.
• Expand tuple syntactic sugar.
• Expand out operator sections.
• Expand out string literals.
• Expand out numeric literals.

We will however punt on an important part of the Haskell specification, namely overloaded literals. In
Haskell numeric literals are replaced by specific functions from the Num or Fractional typeclasses.

-- Frontend
42 :: Num a => a
3.14 :: Fractional a => a

-- Desugared
fromInteger (42 :: Integer)
fromRational (3.14 :: Rational)

We will not implement this, as it drastically expands the desugarer scope.

We will however follow GHC’s example in manifesting unboxed types as first class values in the language
so literals that appear in the AST are rewritten in terms of the wired-in constructors (Int#, Char#,
Addr#, etc).

I# : Int# -> Int
C# : Char# -> Char

> :core 1
I# 1#
> :core 1 + 2
plus (I# 1#) (I# 2#)
> :core ”snazzleberry”
unpackCString# ”snazzleberry”#
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Core

e Core language is the result of translation of the frontend language into an explicitly typed form. Just
like GHC we will use a System-F variant, although unlike GHC we will effectively just be using vanilla
System-F without all of the extensions ( coercions, equalities, roles, etc ) that GHC uses to implement
more complicated features like GADTs and type families.

is is one of the most defining feature of GHC Haskell, its compilation into a statically typed inter-
mediate Core language. It is a well-engineers detail of GHC’s design that has informed much of how
Haskell the language has evolved as a language with a exceedingly large frontend language that all melts
away into a very tiny concise set of abstractions. Just like GHC we will extract all our language into a
small core, with just a few constructors.

data Expr
= App Expr Expr
| Var Var
| Lam Name Type Expr
| Case Expr [Alt]
| Let Bind Expr
| Lit Literal
| Placeholder Name Type

data Var
= Id Name Type
| TyVar Name Kind

e types and kind types are also equally small.

data Type
= TVar TVar
| TCon TyCon
| TApp Type Type
| TArr Type Type
| TForall [Pred] [TVar] Type

data Kind
= KStar
| KArr Kind Kind
| KPrim
| KVar Name

Since the Core language is explicitly typed, it is trivial to implement an internal type checker for it.
Running the typechecker on the generated core is a good way to catch optimization and desugaring
bugs, and determine if the compiler has produced invalid intermediate code.
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Type Classes

Typeclasses are also remarkably subtle to implement. We will implement just single parameter type-
classes and use the usual dictionary passing translation when compiling the frontend to Core. Although
the translation and instance search logic is not terribly complicated, it is however very verbose and
involves a lot of bookkeeping about the global typeclass hierarchy.

For example the following simplified Num typeclass generates quite a bit of elaborated definitions in the
Core language to generate the dictionary and selector functions for the overloaded plus function.

class Num a where
plus :: a -> a -> a
mult :: a -> a -> a
sub :: a -> a -> a

instance Num Int where
plus = plusInt
mult = multInt
sub = subInt

plusInt :: Int -> Int -> Int
plusInt (I# a) (I# b) = I# (plusInt# a b)

is expands into the following set of Core definitions.

plusInt :: Int -> Int -> Int
plusInt = \(ds1 : Int)

(ds2 : Int) ->
case ds1 of {
I# ds8 ->

case ds2 of {
I# ds9 ->

case (plusInt# ds8 ds9) of {
__DEFAULT {ds5} -> (I# ds5)

}
}

}

dplus :: forall a. DNum a -> a -> a -> a
dplus = \(tpl : DNum a) ->

case tpl of {
DNum a b c -> a

}

plus :: forall e. Num e => e -> e -> e
plus = \($dNum_a : DNum e)
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(ds1 : e)
(ds2 : e) ->
(dplus $dNum_a ds1 ds2)

Our typeclass infrastructure will be able to support the standard typeclass hierarchy from the Prelude.
Our instance search mechanism will be subject to the same restriction rules that GHC enforces.

• Paterson condition
• Coverage condition
• Bounded context stack

Type Checker

e type checker is the largest module and probably the most nontrivial part of our compiler. e
module consists of roughly 1200 lines of code. Although the logic is not drastically different from the
simple little HM typechecker we wrote previously, it simply has to do more bookkeeping and handle
more cases.

e implementation of the typechecker will be split across four modules:

• Infer.hs - Main inference driver
• Unify.hs - Unification logic
• ClassEnv.hs - Typeclass instance resolution
• Elaboration.hs - Typeclass elaboration

e monad itself is a RWST + Except stack, with State holding the internal state of the inference engine
and Writer gathering the generated constraint set that is passed off to the solver.

-- | Inference monad
type InferM = RWST

Env -- Typing environment
[Constraint] -- Generated constraints
InferMState -- Inference state

(Except -- Inference errors
TypeError)

-- | Inference state
data InferMState = InferMState

{ count :: Int -- ^ Name supply
, preds :: [Pred] -- ^ Typeclass predicates
, skolems :: Skolems -- ^ Skolem scope
, overloads :: ClassEnv -- ^ Overloaded identifiers
, active :: Name -- ^ Active function name
, classh :: ClassHier -- ^ Typeclass hierarchy
}
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In Fun we will extend the simple type checker with arbitrary rank polymorphism (i.e. RankNTypes
in GHC). is is actually required to implement typeclasses in their full generality, although in Proto-
Haskell we will cheat a little bit.

Interpreter

For ProtoHaskell we will actually directly evaluate the resulting Core expressions in an interpreter. By
virtue of us translating the expressions into Haskell expressions we will get lazy evaluation almost for
free and will let us run our programs from inside of the interactive shell.

sieve :: [Int] -> [Int]
sieve [] = []
sieve (p:ps) = p : sieve (filter (nonMultiple p) ps)

nonMultiple :: Int -> Int -> Bool
nonMultiple p n = ((n/p)*p) /= n

primes :: [Int]
primes = sieve [2..]

ProtoHaskell> take 5 (cycle [1,2])
[1,2,1,2,1]

ProtoHaskell> take 5 primes
[2,3,5,7,11]

Error Reporting

We will do quite a bit of error reporting for the common failure modes of the type checker, desugar, and
rename phases including position information tracking in Fun. However doing this in full is surprisingly
involved and would add a significant amount of code to the reference implementation. As such we will
not be as thorough as GHC in handling every failure mode by virtue of the scope of our project being
a toy language with the primary goal being conciseness and simplicity.

Frontend

e Frontend language for ProtoHaskell is a fairly large language, consisting of many different types.
Let’s walk through the different constructions. e frontend syntax is split across several datatypes.

• Decls - Declarations syntax
• Expr - Expressions syntax
• Lit - Literal syntax
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• Pat - Pattern syntax
• Types - Type syntax
• Binds - Binders

At the top is the named Module and all toplevel declarations contained therein. e first revision of the
compiler has a very simple module structure, which we will extend later in fun with imports and public
interfaces.

data Module = Module Name [Decl] -- ^ module T where { .. }
deriving (Eq,Show)

Declarations or Decl objects are any construct that can appear at toplevel of a module. ese are namely
function, datatype, typeclass, and operator definitions.

data Decl
= FunDecl BindGroup -- ^ f x = x + 1
| TypeDecl Type -- ^ f :: Int -> Int
| DataDecl Constr [Name] [ConDecl] -- ^ data T where { ... }
| ClassDecl [Pred] Name [Name] [Decl] -- ^ class (P) => T where { ... }
| InstDecl [Pred] Name Type [Decl] -- ^ instance (P) => T where { ... }
| FixityDecl FixitySpec -- ^ infixl 1 {..}
deriving (Eq, Show)

A binding group is a single line of definition for a function declaration. For instance the following
function has two binding groups.

factorial :: Int -> Int

-- Group #1
factorial 0 = 1

-- Group #2
factorial n = n * factorial (n - 1)

One of the primary roles of the desugarer is to merge these disjoint binding groups into a single splitting
tree of case statements under a single binding group.

data BindGroup = BindGroup
{ _matchName :: Name
, _matchPats :: [Match]
, _matchType :: Maybe Type
, _matchWhere :: [[Decl]]
} deriving (Eq, Show)
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e expression or Expr type is the core AST type that we will deal with and transform most frequently.
is is effectively a simple untyped lambda calculus with let statements, pattern matching, literals, type
annotations, if/these/else statements and do-notation.

type Constr = Name

data Expr
= EApp Expr Expr -- ^ a b
| EVar Name -- ^ x
| ELam Name Expr -- ^ \\x . y
| ELit Literal -- ^ 1, ’a’
| ELet Name Expr Expr -- ^ let x = y in x
| EIf Expr Expr Expr -- ^ if x then tr else fl
| ECase Expr [Match] -- ^ case x of { p -> e; ... }
| EAnn Expr Type -- ^ ( x : Int )
| EDo [Stmt] -- ^ do { ... }
| EFail -- ^ pattern match fail
deriving (Eq, Show)

Inside of case statements will be a distinct pattern matching syntax, this is used both at the toplevel
function declarations and inside of case statements.

data Match = Match
{ _matchPat :: [Pattern]
, _matchBody :: Expr
, _matchGuard :: [Guard]
} deriving (Eq, Show)

data Pattern
= PVar Name -- ^ x
| PCon Constr [Pattern] -- ^ C x y
| PLit Literal -- ^ 3
| PWild -- ^ _
deriving (Eq, Show)

e do-notation syntax is written in terms of two constructions, one for monadic binds and the other
for monadic statements.

data Stmt
= Generator Pattern Expr -- ^ pat <- exp
| Qualifier Expr -- ^ exp
deriving (Eq, Show)

Literals are the atomic wired-in types that the compiler has knowledge of and will desugar into the
appropriate builtin datatypes.
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data Literal
= LitInt Int -- ^ 1
| LitChar Char -- ^ ’a’
| LitString [Word8] -- ^ ”foo”#
deriving (Eq, Ord, Show)

For data declarations we have two categories of constructor declarations that can appear in the body,
regular constructors and record declarations. We will adopt the Haskell -XGADTSyntax for all data
declarations.

-- Regular Syntax
data Person = Person String Int

-- GADTSyntax
data Person where

Person :: String -> Int -> Person

-- Record Syntax
data Person where

Person :: Person { name :: String, age :: Int }

data ConDecl
= ConDecl Constr Type -- ^ T :: a -> T a
| RecDecl Constr [(Name, Type)] Type -- ^ T :: { label :: a } -> T a
deriving (Eq, Show, Ord)

Fixity declarations are simply a binding between the operator symbol and the fixity information.

data FixitySpec = FixitySpec
{ fixityFix :: Fixity
, fixityName :: String
} deriving (Eq, Show)

data Assoc = L | R | N
deriving (Eq,Ord,Show)

data Fixity
= Infix Assoc Int
| Prefix Int
| Postfix Int
deriving (Eq,Ord,Show)

Data Declarations

Data declarations are named blocks of variousConDecl constructors for each of the fields or constructors
of a user-defined datatype.
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data qname [var] where
[tydecl]

data Unit where
Unit :: Unit

DataDecl
(Name ”Unit”)
[]
[ ConDecl

(Name ”Unit”) (Forall [] [] (TCon AlgTyCon { tyId = Name ”Unit” }))
]

Function Declarations

Function declarations create FunDecl withBindGroup for the pattern on the left hand side of the toplevel
declaration. e matchPat is simply the sequence of patterns (PVar, PCon, PLit) on the left hand side.
If a type annotation is specified it is stored in the matchType field. Likewise, if there is a sequence of
where statements these are also attached directly to the declaration, and will later be desugared away
into local let statements across the body of the function.

qname [pat] = rhs [where decls]

const x y = x

FunDecl
BindGroup
{ _matchName = Name ”const”
, _matchPats =

[ Match
{ _matchPat = [ PVar (Name ”x”) , PVar (Name ”y”) ]
, _matchBody = EVar (Name ”x”)
}

]
, _matchType = Nothing
, _matchWhere = [ [] ]
}

Pattern matches across multiple lines are treated as two separate declarations, which will later be grouped
on the matchName in the desugaring phase. So for instance the map function has the following repre-
sentation:

map f [] = []
map f (x:xs) = Cons (f x) (map f xs)

123



FunDecl
BindGroup
{ _matchName = Name ”map”
, _matchPats =

[ Match
{ _matchPat = [ PVar (Name ”f”) , PCon (Name ”Nil”) [] ]
, _matchBody = EVar (Name ”Nil”)
}

]
, _matchType = Nothing
, _matchWhere = [ [] ]
}

FunDecl
BindGroup
{ _matchName = Name ”map”
, _matchPats =

[ Match
{ _matchPat =

[ PVar (Name ”f”)
, PCon (Name ”Cons”) [ PVar (Name ”x”) , PVar (Name ”xs”) ]
]

, _matchBody =
EApp
(EApp

(EVar (Name ”Cons”)) (EApp (EVar (Name ”f”)) (EVar (Name ”x”))))
(EApp

(EApp (EVar (Name ”map”)) (EVar (Name ”f”))) (EVar (Name ”xs”)))
}

]
, _matchType = Nothing
, _matchWhere = [ [] ]
}

Fixity Declarations

Fixity declarations are exceedingly simple, they store the binding precedence of the declaration along
with its associativity (Left, Right, Non-Associative) and the infix symbol.

[infixl|infixr|infix] [integer] ops;

infixl 4 +;

FixityDecl
FixitySpec { fixityFix = Infix L 4 , fixityName = ”+” }
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Typeclass Declarations

Typeclass declarations consist simply of the list of typeclass constraints, the name of the class, and the
type variable ( single parameter only ). e body of the class is simply a sequence of scoped FunDecl
declarations with only the matchType field.

class [context] => classname [var] where
[body]

Consider a very simplified Num class.

class Num a where
plus :: a -> a -> a

ClassDecl
[]
(Name ”Num”)
[ Name ”a” ]
[ FunDecl

BindGroup
{ _matchName = Name ”plus”
, _matchPats = []
, _matchType =

Just
(Forall

[]
[]
(TArr

(TVar TV { tvName = Name ”a” })
(TArr

(TVar TV { tvName = Name ”a” })
(TVar TV { tvName = Name ”a” }))))

, _matchWhere = []
}

]

Typeclass instances follow the same pattern, they are simply the collection of instance constraints, the
name of the typeclass, and the head of the type class instance type. e declarations are a sequence of
FunDecl objects with the bodies of the functions for each of the overloaded function implementations.

instance [context] => head where
[body]

For example:
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instance Num Int where
plus = plusInt

InstDecl
[]
(Name ”Num”)
(TCon AlgTyCon { tyId = Name ”Int” })
[ FunDecl

BindGroup
{ _matchName = Name ”plus”
, _matchPats =

[ Match { _matchPat = [] , _matchBody = EVar (Name ”plusInt”) } ]
, _matchType = Nothing
, _matchWhere = [ [] ]
}

]

Wired-in Types

While the base Haskell is quite small, several portions of the desugaring process require the compiler
to be aware about certain types before they are otherwise defined in the Prelude. For instance the type
of every guarded pattern in the typechecker is Bool. ese are desugared into a case statement that
includes the True and False constructors. e Bool type is therefore necessarily baked into the syntax
of the language and is inseparable from the implementation.

sign x
| x > 0 = 1
| x == 0 = 0
| x < 0 = -1

ese are called thewired-in types, and while they are still defined in our Prelude they will have somewhat
special status. e primitive types (of kind #) will be very special and are not user extensible, they map
directly to implementation details of the code generation backend or Haskell functions hard-wired into
the interpreter.

Syntax Name Kind Description
Int# Int# # Machine integer
Char# Char# # Machine char
Double# Double# # Machine double
Addr# Addr# # Heap address
Int Int * Boxed integer
Char Char * Boxed char
Double Double * Boxed double
[] List * -> * List
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Syntax Name Kind Description
(,) Pair * -> * -> * 2-Tuple
() Unit * Unit type
(->) Arrow * -> * -> * Arrow type
Bool Bool * Boolean
IO IO * -> * IO Monad

Traversals

Bottom-up traversals and rewrites in a monadic context are so common that we’d like to automate this
process so that we don’t have to duplicate the same logic across all our code. So we’ll write several generic
traversal functions.

descendM :: (Monad m, Applicative m) => (Expr -> m Expr) -> Expr -> m Expr
descendM f e = case e of

EApp a b -> EApp <$> descendM f a <*> descendM f b
EVar a -> EVar <$> pure a
ELam a b -> ELam <$> pure a <*> descendM f b
ELit n -> ELit <$> pure n
ELet n a b -> ELet <$> pure n <*> descendM f a <*> descendM f b
EIf a b c -> EIf <$> descendM f a <*> descendM f b <*> descendM f c
ECase a xs -> ECase <$> f a <*> traverse (descendCaseM f) xs
EAnn a t -> EAnn <$> descendM f a <*> pure t
EFail -> pure EFail

descendCaseM :: (Monad m, Applicative m) => (Expr -> m Expr) -> Match -> m Match
descendCaseM f e = case e of

Match ps a -> Match <$> pure ps <*> descendM f a

e case where the monad is Identity simply corresponds to a pure expression rewrite.

descend :: (Expr -> Expr) -> Expr -> Expr
descend f ex = runIdentity (descendM (return . f) ex)

For example a transformation for use in this framework of traversals might just use pattern matching
to match specific syntactic structure and rewrite it or simply yield the input and traverse to the next
element in the bottom-up traversal.

A pure transformation that rewrites all variables named “a” to “b” might be written concisely as the
following higher order function.

transform :: Expr -> Expr
transform = descend f

127



where
f (Syn.EVar ”a”) = (Syn.EVar ”b”)
f x = x

is is good for pure logic, but most often our transformations will have to have access to some sort of
state or context during traversal and thus descendM will let us write the same rewrite but in a custom
monadic context.

transform :: Expr -> RewriteM Expr
transform = descendM f

where
f (Syn.EVar x) = do

env <- gets _env
return $ Syn.EVar (lookupVar env x)

f x = x

ese traversals admit very nice composition semantics, and AST transformations can be composed
and chained as easily as functions.

compose
:: (Expr -> Expr)
-> (Expr -> Expr)
-> (Expr -> Expr)

compose f g = descend (f . g)

Recall that monadic actions can be composed like functions using the Kleisli composition operator.

Functions : a -> b
Monadic operations : a -> m b

-- Function composition
(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \x -> g (f x)

-- Monad composition
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
f <=< g � \x -> g x >>= f

We can now write composition descendM functions in terms of Kleisli composition to give us a very
general notion of AST rewrite composition.

composeM
:: (Applicative m, Monad m)
=> (Expr -> m Expr)
-> (Expr -> m Expr)
-> (Expr -> m Expr)

composeM f g = descendM (f <=< g)
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So for instance if we have three AST monadic transformations (a, b, c) that we wish to compose into a
single pass t we can use composeM to generate the composite transformation.

a :: Expr -> RewriteM Expr
b :: Expr -> RewriteM Expr
c :: Expr -> RewriteM Expr

t :: Expr -> RewriteM Expr
t = a ‘composeM‘ b ‘composeM‘ c

Later we utilize both GHC.Generics and Uniplate to generalize this technique even more.

Misc Infrastructure

Repline

Command Line Arguments

GraphSCC

Optparse Applicative

Full Source

e partial source for the Frontend of ProtoHaskell is given. is is a stub of all the data structures and
scaffolding we will use to construct the compiler pipeline.

• ProtoHaskell Frontend

e modules given are:

• Monad.hs - Compiler monad
• Flags.hs - Compiler flags
• Frontend.hs - Frontend syntax
• Name.hs - Syntax names
• Compiler.hs - Initial compiler stub
• Pretty.hs - Pretty printer
• Type.hs - Type syntax
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Resources

See:

• GHC Commentary
• e Architecture of Open Source Applications: GHC
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Extended Parser

Up until now we’ve been using parser combinators to build our parsers. Parser combinators build
top-down parsers that formally belong to the LL(k) family of parsers. e parser proceeds top-down,
with a sequence of k characters used to dispatch on the leftmost production rule. Combined with
backtracking (i.e. the try combinator) this is simultaneously both an extremely powerful and simple
model to implement as we saw before with our simple 100 line parser library.

However there is a family of grammars that include left-recursion that LL(k) can be inefficient and often
incapable of parsing. Left-recursive rules are such where the left-most symbol of the rule recurses on
itself. For example:

e ::= e op atom

Now we demonstrated before that we could handle these cases using the parser combinator chainl1,
and while this is possible sometimes it can in many cases be an inefficient use of the parser stack and
lead to ambiguous cases.

e other major family of parsers, LR, are not plagued with the same concerns over left recursion. On the
other hand LR parser are exceedingly more complicated to implement, relying on a rather sophisticated
method known as Tomita’s algorithm to do the heavy lifting. e tooling around the construction of the
production rules in a form that can be handled by the algorithm is often handled by a DSL that generates
the code for the parser. While the tooling is fairly robust, there is a level of indirection between us and
the code that can often be a bit of brittle to extend with custom logic.

e most common form of this toolchain is the Lex/Yacc lexer and parser generator which compile into
efficient C parsers for LR grammars. Haskell’s Happy and Alex are roughly the Haskell equivalent of
these tools.

Toolchain

Our parser and lexer logic will be spread across two different modules.

• Lexer.x
• Parser.y

e code in each of these modules is a hybrid of the specific Alex/Happy grammar syntax and arbitrary
Haskell logic that is spliced in. Code delineated by braces ({}) is regular Haskell, while code outside is
parsera and lexer logic.
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-- **Begin Haskell Syntax**
{
{-# OPTIONS_GHC -w #-}

module Lexer (
Token(..),
scanTokens

) where

import Syntax
}
-- **End Haskell Syntax**

-- **Begin Alex Syntax**
%wrapper ”basic”

$digit = 0-9
$alpha = [a-zA-Z]
$eol = [\n]
-- **End Alex Syntax**

e files will be used during the code generation of the two modules Lexer and Parser. e toolchain
is accessible in several ways, first via the command-line tools alex and happy which will generate the
resulting modules by passing the appropriate input file to the tool.

$ alex Lexer.x # Generates Lexer.hs
$ happy Parser.y # Generates Parser.hs

Or inside of the cabal file using the build-tools command.

Build-depends: base, array
build-tools: alex, happy
other-modules:
Parser,
Lexer

So the resulting structure of our interpreter will have the following set of files.

• Lexer.hs
• Parser.hs
• Eval.hs
• Main.hs
• Syntax.hs
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Alex

Our lexer module will export our Token definition and a function for converting an arbitrary String
into a token stream or a list of Tokens.

{
module Lexer (

Token(..),
scanTokens

) where

import Syntax
}

e tokens are simply an enumeration of the unique possible tokens in our grammar.

data Token
= TokenLet
| TokenTrue
| TokenFalse
| TokenIn
| TokenLambda
| TokenNum Int
| TokenSym String
| TokenArrow
| TokenEq
| TokenAdd
| TokenSub
| TokenMul
| TokenLParen
| TokenRParen
| TokenEOF
deriving (Eq,Show)

scanTokens :: String -> [Token]
scanTokens = alexScanTokens

e token definition is a list of function definitions mapping atomic characters and alphabetical se-
quences to constructors for our Token datatype.

%wrapper ”basic”

$digit = 0-9
$alpha = [a-zA-Z]
$eol = [\n]
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tokens :-

-- Whitespace insensitive
$eol ;
$white+ ;

-- Comments
”#”.* ;

-- Syntax
let { \s -> TokenLet }
True { \s -> TokenTrue }
False { \s -> TokenFalse }
in { \s -> TokenIn }
$digit+ { \s -> TokenNum (read s) }
”->” { \s -> TokenArrow }
\= { \s -> TokenEq }
\\ { \s -> TokenLambda }
[\+] { \s -> TokenAdd }
[\-] { \s -> TokenSub }
[\*] { \s -> TokenMul }
\( { \s -> TokenLParen }
\) { \s -> TokenRParen }
$alpha [$alpha $digit \_ \’]* { \s -> TokenSym s }

Happy

Using Happy and our previosly defind lexer we’ll write down the production rules for our simple un-
typed lambda calculus.

We start by defining a Syntax module where we define the AST we’ll generate from running over the
token stream to produce the program graph structure.

module Syntax where

type Name = String

data Expr
= Lam Name Expr
| App Expr Expr
| Var Name
| Lit Lit
| Op Binop Expr Expr
deriving (Eq,Show)
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data Lit
= LInt Int
| LBool Bool
deriving (Show, Eq, Ord)

data Binop = Add | Sub | Mul | Eql
deriving (Eq, Ord, Show)

e token constructors are each assigned to a name that will be used in our production rules.

-- Lexer structure
%tokentype { Token }

-- Token Names
%token

let { TokenLet }
true { TokenTrue }
false { TokenFalse }
in { TokenIn }
NUM { TokenNum $$ }
VAR { TokenSym $$ }
’\\’ { TokenLambda }
’->’ { TokenArrow }
’=’ { TokenEq }
’+’ { TokenAdd }
’-’ { TokenSub }
’*’ { TokenMul }
’(’ { TokenLParen }
’)’ { TokenRParen }

e parser itself will live inside of a custom monad of our choosing. In this case we’ll add error handling
with the Except monad that will break out of the parsing process if an invalid production or token is
found and return a Left value which we’ll handle inside of our toplevel logic.

-- Parser monad
%monad { Except String } { (>>=) } { return }
%error { parseError }

And finally our production rules, the toplevel entry point for our parser will be the expr rule. e left
hand side of the production is a Happy production rule which can be mutually recursive, while the
right hand side is a Haskell expression with several metavariable indicated by the dollar sign variables
that map to the nth expression on the left hand side.

$0 $1 $2 $3 $4 $5
let VAR ’=’ Expr in Expr { App (Lam $2 $6) $4 }
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-- Entry point
%name expr

-- Operators
%left ’+’ ’-’
%left ’*’
%%

Expr : let VAR ’=’ Expr in Expr { App (Lam $2 $6) $4 }
| ’\\’ VAR ’->’ Expr { Lam $2 $4 }
| Form { $1 }

Form : Form ’+’ Form { Op Add $1 $3 }
| Form ’-’ Form { Op Sub $1 $3 }
| Form ’*’ Form { Op Mul $1 $3 }
| Fact { $1 }

Fact : Fact Atom { App $1 $2 }
| Atom { $1 }

Atom : ’(’ Expr ’)’ { $2 }
| NUM { Lit (LInt $1) }
| VAR { Var $1 }
| true { Lit (LBool True) }
| false { Lit (LBool False) }

Notice how naturally we can write a left recursive grammar for our binary infix operators.

Syntax Errors

Parsec’s default error reporting leaves a bit to be desired, but does in fact contain most of the information
needed to deliver better messages packed inside the ParseError structure.

showSyntaxError :: L.Text -> ParseError -> String
showSyntaxError s err = L.unpack $ L.unlines [

” ”,
” ” <> lineContents,
” ” <> ((L.replicate col ” ”) <> ”^”),
(L.pack $ show err)

]
where
lineContents = (L.lines s) !! line
pos = errorPos err
line = sourceLine pos - 1
col = fromIntegral $ sourceColumn pos - 1
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Now when we enter an invalid expression the error reporting will point us directly to the adjacent lexeme
that caused the problem as is common in many languages.

�> \x -> x +

\x -> x +
^

”<interactive>” (line 1, column 11):
unexpected end of input
expecting ”(”, character, literal string, ”[”, integer, ”if” or identifier

Type Error Provenance

Before our type inference engine would generate somewhat typical type inference error messages. If two
terms couldn’t be unified it simply told us this and some information about the top-level declaration
where it occurred, leaving us with a bit of a riddle about how exactly this error came to be.

Cannot unify types:
Int

with
Bool

in the definition of ’foo’

Effective error reporting in the presence of type inference is a difficult task, effectively our typechecker
takes our frontend AST and transforms it into a large constraint problem, destroying position informa-
tion in the process. Even if the position information were tracked, the nature of unification is that a
cascade of several unifications can lead to unsolvability and the immediate two syntactic constructs that
gave rise to a unification failure are not necessarily the two that map back to human intuition about
how the type error arose. Very little research has done on this topic and it remains an open topic with
very immediate and applicable results to programming.

To do simple provenance tracking we will use a technique of tracking the “flow” of type information
through our typechecker and associate position information with the inferred types.

type Name = String

data Expr
= Var Loc Name
| App Loc Expr Expr
| Lam Loc Name Expr
| Lit Loc Int

data Loc = NoLoc | Located Int
deriving (Show, Eq, Ord)
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So now inside of our parser we simply attach Parsec information on to each AST node. For example
for the variable term.

variable :: Parser Expr
variable = do

x <- identifier
l <- sourceLine <$> getPosition
return (Var (Located l) x)

Our type system will also include information, although by default it will use the NoLoc value until
explicit information is provided during inference. e two functions getLoc and setLoc will be used
to update and query the position information from type terms.

data Type
= TVar Loc TVar
| TCon Loc Name
| TArr Loc Type Type
deriving (Show, Eq, Ord)

newtype TVar = TV String
deriving (Show, Eq, Ord)

typeInt :: Type
typeInt = TCon NoLoc ”Int”

setLoc :: Loc -> Type -> Type
setLoc l (TVar _ a) = TVar l a
setLoc l (TCon _ a) = TCon l a
setLoc l (TArr _ a b) = TArr l a b

getLoc :: Type -> Loc
getLoc (TVar l _) = l
getLoc (TCon l _) = l
getLoc (TArr l _ _) = l

Our fresh variable supply now also takes a location field which is attached to the resulting type variable.

fresh :: Loc -> Check Type
fresh l = do

s <- get
put s{count = count s + 1}
return $ TVar l (TV (letters !! count s))

infer :: Expr -> Check Type
infer expr = case expr of
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Var l n -> do
t <- lookupVar n
return $ setLoc l t

App l a b -> do
ta <- infer a
tb <- infer b
tr <- fresh l
unify ta (TArr l tb tr)
return tr

Lam l n a -> do
tv <- fresh l
ty <- inEnv (n, tv) (infer a)
return (TArr l (setLoc l ty) tv)

Lit l _ -> return (setLoc l typeInt)

Now specifically at the call site of our unification solver, if we encounter a unification fail we simply
pluck the location information off the two type terms and plug it into the type error fields.

unifies t1 t2 | t1 == t2 = return emptyUnifer
unifies (TVar _ v) t = v ‘bind‘ t
unifies t (TVar _ v) = v ‘bind‘ t
unifies (TArr _ t1 t2) (TArr _ t3 t4) = unifyMany [t1, t2] [t3, t4]
unifies (TCon _ a) (TCon _ b) | a == b = return emptyUnifer
unifies t1 t2 = throwError $ UnificationFail t1 (getLoc t1) t2 (getLoc t2)

bind :: TVar -> Type -> Solve Unifier
bind a t

| eqLoc t a = return (emptySubst, [])
| occursCheck a t = throwError $ InfiniteType a (getLoc t) t
| otherwise = return $ (Subst $ Map.singleton a t, [])

So now we can explicitly trace the provenance of the specific constraints that gave rise to a given type
error all the way back to the source that generated them.

Cannot unify types:
Int
Introduced at line 27 column 5

f 2 3

with
Int -> c
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Introduced at line 5 column 9

let f x y = x y

is is of course the simplest implementation of the tracking method and could be further extended
by giving a weighted ordering to the constraints based on their likelihood of importance and proximity
and then choosing which location to report based on this information. is remains an open area of
work.

Indentation

Haskell’s syntax uses indentation blocks to delineated sections of code. is use of indentation sensitive
layout to convey the structure of logic is sometimes called the offside rule in parsing literature. At the
beginning of a “laidout” block the first declaration or definition can start in any column, and the parser
marks that indentation level. Every subsequent declaration at the same logical level must have the same
indentation.

-- Start of layout ( Column: 0 )
fib :: Int -> Int
fib x = truncate $ ( 1 / sqrt 5 ) * ( phi ^ x - psi ^ x ) -- (Column: > 0)

-- Start of new layout ( Column: 2 )
where

-- Indented block ( Column: > 2 )
phi = ( 1 + sqrt 5 ) / 2
psi = ( 1 - sqrt 5 ) / 2

e Parsec monad is parameterized over a type which stands for the State layer baked into the monad
allowing us to embed custom parser state inside of our rules. To adopt our parser to handle sensitive
whitespace we will use:

-- Indentation sensitive Parsec monad.
type IParsec a = Parsec Text ParseState a

data ParseState = ParseState
{ indents :: Column
} deriving (Show)

initParseState :: ParseState
initParseState = ParseState 0

e parser stores the internal position state (SourcePos) during its traversal, and makes it accessible
inside of rule logic via the getPosition function.

data SourcePos = SourcePos SourceName !Line !Column
getPosition :: Monad m => ParsecT s u m SourcePos
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In terms of this function we can write down a set of logic that will allow us to query the current column
count and then either succeed or fail to match on a pattern based on the current indentation level. e
laidout combinator will capture the current indentation state and push it into the indents field in
the State monad.

laidout :: Parsec s ParseState a -> Parsec s ParseState a
laidout m = do

cur <- indents <$> getState
pos <- sourceColumn <$> getPosition
modifyState $ \st -> st { indents = pos }
res <- m
modifyState $ \st -> st { indents = cur }
return res

And then have specific logic which guard the parser match based on comparing the current indentation
level to the stored indentation level.

indentCmp
:: (Column -> Column -> Bool)
-> Parsec s ParseState ()

indentCmp cmp = do
col <- sourceColumn <$> getPosition
current <- indents <$> getState
guard (col ‘cmp‘ current)

We can then write two combinators in terms of this function which match on either further or identical
indentation.

indented :: IParsec ()
indented = indentCmp (>) <?> ”Block (indented)”

align :: IParsec ()
align = indentCmp (==) <?> ”Block (same indentation)”

On top of these we write our two combinators for handling block syntax, which match a sequence of
vertically aligned patterns as a list.

block, block1 :: Parser a -> Parser [a]
block p = laidout (many (align >> p))
block1 p = laidout (many1 (align >> p))

Haskell uses an optional layout rule for several constructs, allowing us to equivalently manually delimit
indentation sensitive syntax with braces. e most common use is for do-notation. So for example:
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example = do { a <- m; b }

example = do
a <- m
b

To support this in Parsec style we implement a maybeBraces function.

maybeBraces :: Parser a -> Parser [a]
maybeBraces p = braces (endBy p semi) <|> block p

maybeBraces1 :: Parser a -> Parser [a]
maybeBraces1 p = braces (endBy1 p semi) <|> block p

Extensible Operators

Haskell famously allows the definition of custom infix operators, an extremely useful language feature
although this poses a bit of a challenge to parse! ere are two ways to do this and both depend on two
properties of the operators.

• Precedence
• Associativity

1. e first, the way that GHC does it, is to parse all operators as left associative and of the same
precedence, and then before desugaring go back and “fix” the parse tree given all the information
we collected after finishing parsing.

2. e second method is a bit of a hack, and involves simply storing the collected operators inside
of the Parsec state monad and then simply calling buildExpressionParser on the current state
each time we want to parse an infix operator expression.

To do the later method we set up the AST objects for our fixity definitions, which associate precedence
and associativity annotations with a custom symbol.

data FixitySpec = FixitySpec
{ fixityFix :: Fixity
, fixityName :: String
} deriving (Eq, Show)

data Assoc
= L
| R
| N
deriving (Eq,Ord,Show)
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data Fixity
= Infix Assoc Int
| Prefix Int
| Postfix Int
deriving (Eq,Ord,Show)

Our parser state monad will hold a list of the active fixity specifications and whenever a definition is
encountered we will append to this list.

data ParseState = ParseState
{ indents :: Column
, fixities :: [FixitySpec]
} deriving (Show)

initParseState :: ParseState
initParseState = ParseState 0 defaultOps

addOperator :: FixitySpec -> Parsec s ParseState ()
addOperator fixdecl = do

modifyState $ \st -> st { fixities = fixdecl : (fixities st) }

e initial state will consist of the default arithmetic and list operators defined with the same specifica-
tion as the Haskell specification.

defaultOps :: [FixitySpec]
defaultOps = [

FixitySpec (Infix L 4) ”>”
, FixitySpec (Infix L 4) ”<”
, FixitySpec (Infix L 4) ”/=”
, FixitySpec (Infix L 4) ”==”

, FixitySpec (Infix R 5) ”:”

, FixitySpec (Infix L 6) ”+”
, FixitySpec (Infix L 6) ”-”

, FixitySpec (Infix L 5) ”*”
, FixitySpec (Infix L 5) ”/”
]

Now in our parser we need to be able to transform the fixity specifications into Parsec operator defini-
tions. is is a pretty straightforward sort and group operation on the list.

fixityPrec :: FixitySpec -> Int
fixityPrec (FixitySpec (Infix _ n) _) = n
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fixityPrec (FixitySpec _ _) = 0

toParser (FixitySpec ass tok) = case ass of
Infix L _ -> infixOp tok (op (Name tok)) Ex.AssocLeft
Infix R _ -> infixOp tok (op (Name tok)) Ex.AssocRight
Infix N _ -> infixOp tok (op (Name tok)) Ex.AssocNone

mkTable ops =
map (map toParser) $
groupBy ((==) ‘on‘ fixityPrec) $

reverse $ sortBy (compare ‘on‘ fixityPrec) $ ops

Now when parsing an infix operator declaration we simply do a state operation and add the operator
to the parser state so that all subsequent definitions can use it. is differs from Haskell slightly in that
operators must be defined before their usage in a module.

fixityspec :: Parser FixitySpec
fixityspec = do

fix <- fixity
prec <- precedence
op <- operator
semi
let spec = FixitySpec (fix prec) op
addOperator spec
return spec
where
fixity = Infix L <$ reserved ”infixl”

<|> Infix R <$ reserved ”infixr”
<|> Infix N <$ reserved ”infix”

precedence :: Parser Int
precedence = do

n <- natural
if n <= 10
then return (fromInteger n)
else empty
<?> ”Invalid operator precedence”

fixitydecl :: Parser Decl
fixitydecl = do

spec <- fixityspec
return $ FixityDecl spec

<?> ”operator fixity definition”

And now when we need to parse an infix expression term we simply pull our state out and build the
custom operator table, and feed this to the build Expression Parser just as before.
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term :: Parser Expr -> Parser Expr
term a = do

st <- getState
let customOps = mkTable (fixities st)
Ex.buildExpressionParser customOps a

Full Source

• Happy Parser
• Imperative Language (Happy)
• Layout Combinators
• Type Provenance Tracking

Resources

e tooling and documentation for Alex and Happy is well-developed as it is used extensively inside of
GHC:

• Alex User Guide
• Happy User Guide
• A Tool for Generalized LR Parsing In Haskell
• Haskell Syntax Definition

GHC itself uses Alex and Happy for its parser infastructure. e resulting parser is rather sophisicated.

• Lexer.x
• Parser.y

One of the few papers ever written in Type Error reporting gives some techniques for presentation and
tracing provenance:

• Top Quality Type Error Messages
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Datatypes

Algebraic data types

Algebraic datatypes are a family of constructions arising out of two operations, products (a * b) and
sums (a + b) (sometimes also called coproducts). A product encodes multiple arguments to constructors
and sums encode choice between constructors.

{-# LANGUAGE TypeOperators #-}

data Unit = Unit -- 1
data Empty -- 0
data (a * b) = Product a b -- a * b
data (a + b) = Inl a | Inr b -- a + b
data Exp a b = Exp (a -> b) -- a^b
data Rec f = Rec (f (Rec f)) -- \mu

e two constructors Inl and Inr are the left and right injections for the sum. ese allows us to
construct sums.

Inl :: a -> a + b
Inr :: b -> a + b

Likewise for the product there are two function fst and snd which are projections which de construct
products.

fst :: a * b -> a
snd :: a * b -> b

Once a language is endowed with the capacity to write a single product or a single sum, all higher order
products can written in terms of sums of products. For example a 3-tuple can be written in terms
of the composite of two 2-tuples. And indeed any n-tuple or record type can be written in terms of
compositions of products.

type Prod3 a b c = a*(b*c)

data Prod3’ a b c
= Prod3 a b c

prod3 :: Prod3 Int Int Int
prod3 = Product 1 (Product 2 3)

Or a sum type of three options can be written in terms of two sums:
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type Sum3 a b c = (a+b)+c

data Sum3’ a b c
= Opt1 a
| Opt2 b
| Opt3 c

sum3 :: Sum3 Int Int Int
sum3 = Inl (Inl 2)

data Option a = None | Some a

type Option’ a = Unit + a

some :: Unit + a
some = Inl Unit

none :: a -> Unit + a
none a = Inr a

In Haskell the convention for the sum and product notation is as follows:

Notation Haskell Type
a * b (a,b)
a + b Either a b
Inl Left
Inr Right
Empty Void
Unit ()

Isorecursive Types

Nat = µα.1 + α

roll :: Rec f -> f (Rec f)
roll (Rec f) = f

unroll :: f (Rec f) -> Rec f
unroll f = Rec f

Peano numbers:
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type Nat = Rec NatF
data NatF s = Zero | Succ s

zero :: Nat
zero = Rec Zero

succ :: Nat -> Nat
succ x = Rec (Succ x)

Lists:

type List a = Rec (ListF a)
data ListF a b = Nil | Cons a b

nil :: List a
nil = Rec Nil

cons :: a -> List a -> List a
cons x y = Rec (Cons x y)

Memory Layout

Just as the type-level representation

typedef union {
int a;
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float b;
} Sum;

typedef struct {
int a;
float b;

} Prod;

int main()
{

Prod x = { .a = 1, .b = 2.0 };
Sum sum1 = { .a = 1 };
Sum sum2 = { .b = 2.0 };

}

#include <stddef.h>

typedef struct T
{

enum { NONE, SOME } tag;
union
{

void *none;
int some;

} value;
} Option;

int main()
{

Option a = { .tag = NONE, .value = { .none = NULL } };
Option b = { .tag = SOME, .value = { .some = 3 } };

}

• Algebraic Datatypes in C (Part 1)
• Algebraic Datatypes in C (Part 2)

Pattern Scrutiny

In Haskell:

data T
= Add T T
| Mul T T
| Div T T

149

https://github.com/sdiehl/write-you-a-haskell/tree/master/chapter10/adt.c
https://github.com/sdiehl/write-you-a-haskell/tree/master/chapter10/adt2.c


| Sub T T
| Num Int

eval :: T -> Int
eval x = case x of

Add a b -> eval a + eval b
Mul a b -> eval a + eval b
Div a b -> eval a + eval b
Sub a b -> eval a + eval b
Num a -> a

In C:

typedef struct T {
enum { ADD, MUL, DIV, SUB, NUM } tag;
union {

struct {
struct T *left, *right;

} node;
int value;

};
} Expr;

int eval(Expr t)
{

switch (t.tag) {
case ADD:

return eval(*t.node.left) + eval(*t.node.right);
break;

case MUL:
return eval(*t.node.left) * eval(*t.node.right);
break;

case DIV:
return eval(*t.node.left) / eval(*t.node.right);
break;

case SUB:
return eval(*t.node.left) - eval(*t.node.right);
break;

case NUM:
return t.value;
break;

}
}

• Pattern Matching
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Syntax

GHC.Generics

class Generic a where
type family Rep a :: * -> *
to :: a -> Rep a x
from :: Rep a x -> a

Constructor Models
V1 Void: used for datatypes without constructors
U1 Unit: used for constructors without arguments
K1 Constants, additional parameters.
:*: Products: encode multiple arguments to constructors
:+: Sums: encode choice between constructors
L1 Left hand side of a sum.
R1 Right hand side of a sum.
M1 Meta-information (constructor names, etc.)

newtype M1 i c f p = M1 (f p)
newtype K1 i c p = K1 c
data U p = U

data (:*:) a b p = a p :*: b p
data (:+:) a b p = L1 (a p) | R1 (b p)

Implementation:

{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE DefaultSignatures #-}

import GHC.Generics

-- Auxiliary class
class GEq’ f where

geq’ :: f a -> f a -> Bool

instance GEq’ U1 where
geq’ _ _ = True

instance (GEq c) => GEq’ (K1 i c) where
geq’ (K1 a) (K1 b) = geq a b
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instance (GEq’ a) => GEq’ (M1 i c a) where
geq’ (M1 a) (M1 b) = geq’ a b

instance (GEq’ a, GEq’ b) => GEq’ (a :+: b) where
geq’ (L1 a) (L1 b) = geq’ a b
geq’ (R1 a) (R1 b) = geq’ a b
geq’ _ _ = False

instance (GEq’ a, GEq’ b) => GEq’ (a :*: b) where
geq’ (a1 :*: b1) (a2 :*: b2) = geq’ a1 a2 && geq’ b1 b2

--
class GEq a where

geq :: a -> a -> Bool
default geq :: (Generic a, GEq’ (Rep a)) => a -> a -> Bool
geq x y = geq’ (from x) (from y)

-- Base equalities
instance GEq Char where geq = (==)
instance GEq Int where geq = (==)
instance GEq Float where geq = (==)

-- Equalities derived from structure of (:+:) and (:*:) for free
instance GEq a => GEq (Maybe a)
instance (GEq a, GEq b) => GEq (a,b)

main :: IO ()
main = do

print $ geq 2 (3 :: Int) -- False
print $ geq ’a’ ’b’ -- False
print $ geq (Just ’a’) (Just ’a’) -- True
print $ geq (’a’,’b’) (’a’, ’b’) -- True

• Generics

Wadler’s Algorithm

Consider the task of expanding

f :: Just (Either a b) -> Int
f (Just (Left x)) = 1
f (Just (Right x)) = 2
f Nothing = 3
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f :: Maybe (Either a b) -> Int
f = case ds of _ {

Nothing -> I# 3;
Just ds1 ->
case ds1 of _ {
Left x -> I# 1;
Right x -> I# 2

}
}

Full Source
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Renamer

Renaming Pass

Full Source
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LLVM

JIT Compilation

Just-in-time or JIT compilation is compilation done by dynamically generating executable code. It’s a
common technique used in many language runtimes to generate optimized code for hot code paths as
well ahead of time compilation for various tasks.

So let’s build a small LLVM-like intermediate language and JIT execution engine in Haskell. is will
only function with modern Linux and x86-64 architecture, although in principle this will work on any
platform if you can make the appropriate FFI calls to mmap and mprotect syscalls on your respective
platform.

Types e x86-x64 instruction set is the 64-bit revision of x86 instruction set which was first devel-
oped for the Intel 8086 CPU family. e base types which hardware operates over are integers and
floating point types. Let us just consider the integral types for now, these come in four major varieties:

On the Intel architecture numbers are represented little endianmeaning lower significant bytes are stored
in lower memory addresses. e whole memory representation for a value is partitioned into high bits
and low bits. For example the hexadecimal number 0xc0ffee as a DWORD is stored in memory as:
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In Haskell unboxed integral machine types are provided by the Data.Word module.

data Word8 = W8# Word#
data Word16 = W16# Word#
data Word32 = W32# Word#
data Word64 = W64# Word#

Pointers are simply literal addresses to main memory, where the underlying access and storage are man-
aged by the Linux kernel. To model this abstractly in Haskell we’ll create a datatype containing the
possible values we can operate over.

data Val
= I Int64 -- Integer
| R Reg -- Register
| A Word32 -- Addr
deriving (Eq, Show)

To convert from Haskell types into byte sequences we’ll use the binary library to convert integral types
into little endian arrays of bytes.

bytes :: Integral a => a -> [Word8]
bytes x = fmap BS.c2w bs

where
bs = unpack $ runPut $ putWord32le (fromIntegral x)

For example given a hexadecimal literal this will expand it out into an array of it’s bit components.

val = bytes 0xc0ffee -- [238,255,192,0]

Registers e x64 architecture contains sixteen general purpose 64-bit registers capable of storing a
quadword. ey major ones are labeled rax, rbx, rcx, rdx, rbp, rsi, rdi, and rsp.

Each of the registers is given a specific index (r), which will be used in the binary representation of
specific instructions that operate over these registers.
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RAX RBX RCX RDX RBP RSI RDI RSP
r = 0 1 2 3 4 5 6 7

Each of these registers can be addressed as a smaller register containing a subset of the lower bits. e
32-bit register of rax is eax. ese are shown in the table below.

ese smaller registers are given specific names with modified prefixes.

64-bit 32-bit 16-bit
rax eax ax
rbx ebx bx
rcx ecx cx
rdx edx dx
rsp esp sp
rbp ebp bp
rsi esi si
rdi edi di
rip eip ip

In Haskell we model this a sum type for each of the 64-bit registers. Consider just the 64-bit registers
for now.

data Reg
= RAX -- Accumulator
| RCX -- Counter (Loop counters)
| RDX -- Data
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| RBX -- Base / General Purpose
| RSP -- Current stack pointer
| RBP -- Previous Stack Frame Link
| RSI -- Source Index Pointer
| RDI -- Destination Index Pointer
deriving (Eq, Show)

e index for each register is defined by a simple pattern match case expression.

index :: Reg -> Word8
index x = case x of

RAX -> 0
RCX -> 1
RDX -> 2
RBX -> 3
RSP -> 4
RBP -> 5
RSI -> 6
RDI -> 7

Monads Monads are an algebraic structure with two functions (bind) and (return) and three laws.

bind :: Monad m => m a -> (a -> m b) -> m b
return :: Monad m => a -> m a

e compiler will desugar do-blocks of the form into a canonical form involving generic bind and return
statements.

f :: Monad m => m Int
f = do

a <- x
b <- y
return (a+b)

Is transformed into:

f :: Monad m => m Int
f =

bind x (\a ->
bind y (\b ->

return (a+b))

Monad is implemented as a typeclass indexed by a parameter m, that when instantiated with a typeclass
instances replaces the bind and return functions with a specific implementation of the two functions
(like State or Reader).
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f :: State MyState Int
f =

bindState x (\a ->
bindState y (\b ->

returnState (a+b))

e State monad is an instance of Monad with several functions for composing stateful logic.

get :: State s s -- get the state
put :: s -> State s () -- set the state
modify :: (s -> s) -> State s () -- apply a function over the state

For example a little state machine that holds a single Int value would be written like the following.

machine :: State Int Int
machine = do

put 3
modify (+1)
get

val :: Int
val = execState machine 0

More common would be to have the state variable s be a record with multiple fields that can be modified.
For managing our JIT memory we’ll create a struct with the several fields.

data JITMem = JITMem
{ _instrs :: [Instr]
, _mach :: [Word8]
, _icount :: Word32
, _memptr :: Word32
, _memoff :: Word32
} deriving (Eq, Show)

is will be composed into our X86 monad which will hold the JIT memory as we assemble individual
machine instructions and the pointer and memory offsets for the sequence of assembled instructions.

type X86 a = StateT JITMem (Except String) a

JIT Memory To start creating the JIT we first need to create a block of memory with executable
permissions. Inside of C runtime we can get the flags needed to be passed to the various mmap syscall
to create the necessary memory block.
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#define PROT_NONE 0x00 /* No access. */
#define PROT_READ 0x04 /* pages can be read */
#define PROT_WRITE 0x02 /* pages can be written */
#define PROT_EXEC 0x01 /* pages can be executed */

#define MAP_FILE 0x0001 /* mapped from a file or device */
#define MAP_ANON 0x0002 /* allocated from memory, swap space */
#define MAP_TYPE 0x000f /* mask for type field */

en we simply allocate a given block of memory off the Haskell heap via mmap with the executable
flags.

newtype MmapOption = MmapOption CInt
deriving (Eq, Show, Ord, Num, Bits)

protExec = ProtOption 0x01
protWrite = ProtOption 0x02
mmapAnon = MmapOption 0x20
mmapPrivate = MmapOption 0x02

allocateMemory :: CSize -> IO (Ptr Word8)
allocateMemory size = mmap nullPtr size pflags mflags (-1) 0

where
pflags = protRead <> protWrite
mflags = mapAnon .|. mapPrivate

Haskell pointers can be passed to our JIT’d code by simply casting them into their respective addresses
on the Haskell heap.

heapPtr :: Ptr a -> Word32
heapPtr = fromIntegral . ptrToIntPtr

For example if we want allocate a null-terminated character array and pass a pointer to it’s memory to
our JIT’d code we can write down a asciz to synthesize this memory from a Haskell string and grab
the heap pointer.

asciz :: [Char] -> IO Word32
asciz str = do

ptr <- newCString (str ++ [’\n’])
return $ heapPtr ptr

For C functions we simply use the dynamic linker to grab the function pointer the given symbol in the
memory space of the process. e Haskell runtime links against glibc’s stdio.h and math.h so these
symbols will all be floating around in memory.

160



extern :: String -> IO Word32
extern name = do

dl <- dlopen ”” [RTLD_LAZY, RTLD_GLOBAL]
fn <- dlsym dl name
return $ heapPtr $ castFunPtrToPtr fn

When we’ve compiled our byte vector of machine code we’ll copy into executable memory.

jit :: Ptr Word8 -> [Word8] -> IO (IO Int)
jit mem machCode = do

code <- codePtr machCode
withForeignPtr (vecPtr code) $ \ptr -> do
copyBytes mem ptr (8*6)

return (getFunction mem)

en we’ll use the FFI to synthesize a function pointer to the memory and invoke it.

foreign import ccall ”dynamic”
mkFun :: FunPtr (IO Int) -> IO Int

getFunction :: Ptr Word8 -> IO Int
getFunction mem = do

let fptr = unsafeCoerce mem :: FunPtr (IO Int)
mkFun fptr

Assembly Before we start manually populating our executable code with instructions, let’s look at
assembly form of what we’ll write and create a small little DSL in Haskell make this process closer to the
problem domain. Assembly is the intermediate human readable representation of machine code. Both
clang and gcc are capable of dumping out this representation before compilation. For example for the
following C program takes two integers passed in registers, multiplies them respectively and adds the
result.

int f(int x, int y)
{

return (x*x)^y;
}

Internally the C compiler is condensing the Destructuring the expressions into a linear sequence in-
structions storing the intermediate results in scratch registers and writing the end computed result to
return register. It then selects appropriate machine instruction for each of the abstract operations.

// pseudocode for intermediate C representation
int f() {

int x = register(rdi);
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int y = register(rsi);
int tmp1 = x*x;
int tmp2 = tmp1^y;
return tmp2;

}

We can output the assembly to a file add.s. We’ll use the Intel Syntax which puts the destination
operand before other operands. e alternate AT&T syntax reverses this convention.

$ clang -O2 -S --x86-asm-syntax=intel xor.c

e generated code will resemble the following. Notice that there are two kinds of statements: directives
and instructions. Directive are prefixed with a period while instructions are an operation together with
a list operands. Statements of instructions are grouped into labeled blocks are suffixed with a colon for
example f: is the label containing the logic for the function f.

.file ”xor.c”

.text

.globl f

.type f, @function

.intel_syntax noprefix
f:

mov eax, edi
imul eax, edi
xor eax, esi
ret

e assembler will then turn this sequence of instructions into either an executable or an object file
containing the generated machine code. To disassemble the output we can use objdump to view the
hex sequence of machine instructions and the offsets within the file.

$ objdump -M intel -d xor.o

xor: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <f>:
0: 89 f8 mov eax,edi
2: 0f af c7 imul eax,edi
5: 31 f0 xor eax,esi
7: c3 ret

e compiled program in memory is then a contiguous array of bytes, which is evaluated by moving
the instruction pointer at the start address.

89 f8 0f af c7 31 f0 c3
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Instructions Instructions consist of two parts, an opcode and a set of operands which specify labels,
registers, or addresses to memory which the CPU will execute over for the give instruction. We’ll
consider a subset of interesting operations which operate over integers and manipulate the call stack.

data Instr
= Ret
| Mov Val Val
| Add Val Val
| Sub Val Val
| Mul Val
| IMul Val Val
| Xor Val Val
| Inc Val
| Dec Val
| Push Val
| Pop Val
| Call Val
| Loop Val
| Nop
| Syscall
deriving (Eq, Show)

To add to the JIT memory we’ll simply modify the state by appending an instruction to the _mach field
and adjusting the memory offset pointer by the length of instructions added.

emit :: [Word8] -> X86 ()
emit i = modify $ \s -> s

{ _mach = _mach s ++ i
, _memoff = _memoff s + fromIntegral (length i)
}

Operands Registers

Registers are identified as lowercase (i.e. rbp, rsp). In our expression builder we’ll simply write down
several functions which construct a register value type from an underlying Reg value.

rax :: Val
rax = R RAX

rsi :: Val
rsi = R RSI

Immediate Operands

Immediate operands are direct references to constants (literals or memory addresses) or labels. For
example:
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add eax,42
add eax,0xff

For immediate values we simply push the array of bytes for the number directly on the byte sequence.

imm :: Integral a => a -> X86 ()
imm = emit . bytes

Opcodes e full instruction set for x86 is vast and including AVX, SSE and other specialized intrin-
sics there is an extraordinary amount of complexity and quirky specifications. Each of these abstract
instructions can have multiple opcodes for each type of operands it may take. For example the mov
instruction for register to register movement has opcode 0x89 while moving immediate data into a
register has opcode 0xC7.

e reference for the most common operations the x86asm.net site has a very useful quick reference.
For the full set of possible instructions on your modern Intel processor refer to the 1500 page Intel
Software Developer’s Manual.

To lookup the numerical opcodes for a given instructions, we use a specific naming conventions for the
operands.

Prefix Description
r<size> Register Operand
imm<size> Immediate Operand
m<size> Memory Operand

So for example:

Prefix Description
r64 64 bit register
imm8 8 immediate operand
m32 32 memory operand

For opcodes that operate over a set of possible operands, these are demarcated with a slash, in the form
r8/r16/r32.

For our limited set of instructions there are two types of opcodes.

1. 1-Byte Opcodes
2. 2-Byte Opcodes
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Instruction Opcode
CALL E8
RET C3
NOP 0D
MOV 89
PUSH 50
POP 58
LOOP E2
ADD 83
SUB 29
MUL F7
DIV F7
INC FF
DEC FF
NEG F7
CMP 39
AND 21
OR 09
XOR 31
NOT F7
ADC 11
IDIV F7
IMUL F7
XCHG 87
BSWAP C8
SHR C1
SHL C1
ROR C0
RCR C0
BT BA
BTS BA
BTR B3
JMP EB
JE 84
JNE 85
SYSCALL 05

On top of this opcodes may have an additional prefixes which modify the sizes of arguments involved.
ese were added to allow 32-bit compatibility in the transition between 32-bit and 64-bit systems and
preserve the underlying opcodes of the 32-bit system. For instance the following mov instructions all
operate over registers and perform the same action but over different sizes.

mov al,255
mov ax,255
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mov eax,255
mov rax,255

But translate into different opcodes depending on size.

b0 ff mov al,0xff
66 b8 ff 00 mov ax,0xff
b8 ff 00 00 00 mov eax,0xff
48 c7 c0 ff 00 00 00 mov rax,0xff

prefix opcode data assembly meaning
66 b0 ff mov al, 0xff 8-bit load
66 b8 ff 00 mov ax, 0xff load with a 16-bit prefix (0x66)
66 b8 ff 00 00 00 mov eax, 0xff load with default size of 32 bits
48 c7 c0 ff 00 00 00 mov rax, 0xff Sign-extended load using REX 64-bit prefix (0x48)

Machine Code Ok, let’s look at the full structure of an instruction. It consists of several parts.

e sizes of these parts depend on the size and type of the opcode as well as prefix modifiers.

Prefix Opcode Mod R/M Scale Index Base Displacement Immediate
1-4 bytes 1-3 bytes 1 Byte 1 Byte 1-4 Bytes 1-4 Bytes

Prefix

e header fixes the first four bits to be constant 0b0100 while the next four bits indicate the pretense
of W/R/X/B extensions.

e W bit modifies the operation width. e R, X and B fields extend the register encodings.

• REX.W – Extends the operation width
• REX.R – Extends ModRM.reg
• REX.X – Extends SIB.index
• REX.B – Extends SIB.base or ModRM.r/m

ModR/M byte

e Mod-Reg-R/M byte determines the instruction’s operands and the addressing modes. ese are
several variants of addressing modes.

1. Immediate mode - operand is part of the instruction
2. Register addressing - operand contained in register
3. Direct Mode - operand field of instruction contains address of the operand
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4. Register Indirect Addressing - used for addressing data arrays with offsets
5. Indexing - constant base + register
6. Indexing With Scaling - Base + Register Offset * Scaling Factor
7. Stack Addressing - A variant of register indirect with auto increment/decrement using the RSP

register implicitly
8. Jump relative addressing - RIP + offset

mod meaning
00 Register indirect memory addressing mode
01 Indexed or base/indexed/displacement addressing mode
10 Indexed or base/indexed/displacement addressing mode + displacement
11 R/M denotes a register and uses the REG field

reg
rax 000
rcx 001
rdx 010
rbx 011
rsp 100
rbp 101
rsi 110
rdi 111

In the case of mod = 00, 01 or 10

r/m meaning
000 [BX+SI] or DISP[BX][SI]
001 [BX+DI] or DISP[BX+DI]
010 [BP+SI] or DISP[BP+SI]
011 [BP+DI] or DISP[BP+DI]
100 [SI] or DISP[SI]
101 [DI] or DISP[DI]
110 Displacement-only or DISP[BP]
111 [BX] or DISP[BX]

For example given the following instruction that uses register direct mode and specifies the register
operand in r/m.

mov rbx,rax

We have:
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mod = 0b11
reg = 0b000
r/m = rbx
r/m = 0b011
ModRM = 0b11000011
ModRM = 0xc3

Scale Index Base

Scale is the factor by which index is multipled before being added to base to specify the address of the
operand. Scale can have value of 1, 2, 4, or 8. If scale is not specified, the default value is 1.

scale factor
0b00 1
0b01 2
0b10 4
0b11 8

Both the index and base refer to register in the usual index scheme.

scale/base
rax 000
rcx 001
rdx 010
rbx 011
rsp 100
rbp 101
rsi 110
rdi 111

Instruction Builder Moving forward we’ll create several functions mapping to X86 monadic operators
which assemble instructions in the state monad. Let’s do some simple arithmetic logic first.
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arith :: X86 ()
arith = do

mov rax (I 18)
add rax (I 4)
sub rax (I 2)
imul rax (I 2)
ret

Each of these functions takes in some set of operands given by the algebraic datatype Val and pattern
matches on the values to figure out which x86 opcode to use and how to render the values to bytes.

ret

e simplest cases is simply the return function which takes no operands and is a 1-bit opcode.

ret :: X86 ()
ret = do

emit [0xc3]

add <r64> <imm32>

Add for immediate values extends the operand with a REX.W flag to handle 64-bit immediate data.

0: 48 83 c0 01 add rax,0x1

add :: Val -> Val -> X86 ()
add (R l) (I r) = do

emit [0x48] -- REX.W prefix
emit [0x05] -- ADD
imm r

add <r64> <r64>

Register to register add uses the REX.W flag in the same manor but passes the source register in the
ModRM.reg field using register direct mode. We do bitwise or over the mode 0xc0 and then shift 3
bits to specify the register in register index in the reg bits.

0: 48 01 e0 add rax,rsp

add (R l) (R r) = do
emit [0x48] -- REX prefix
emit [0x01] -- ADD
emit [0xc0 .|. opcode r ‘shiftL‘ 3 .|. opcode l]

mov <r64>, <r64>

Same logic applies for the mov instruction for both the register-to-register and immediate data cases.
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0: 48 89 d8 mov rax,rbx

mov :: Val -> Val -> X86 ()
mov (R dst) (R src) = do

emit [0x48] -- REX.W prefix
emit [0x89] -- MOV
emit [0xC0 .|. opcode src ‘shiftL‘ 3 .|. opcode dst]

mov <r64>, <imm32>

0: 48 c7 c0 2a 00 00 00 mov rax,0x2a

mov (R dst) (I src) = do
emit [0x48] -- REX.W prefix
emit [0xC7] -- MOV
emit [0xC0 .|. (opcode dst .&. 7)]
imm src

inc <r64>, dec <r64>

e inc and dec functions are slightly different in that they share the same opcode but modify the
ModRM bit to specify the operation.

inc :: Val -> X86()
inc (R dst) = do

emit [0x48] -- REX prefix
emit [0xFF] -- INC
emit [0xc0 + index dst]

dec (R dst) = do
emit [0x48] -- REX prefix
emit [0xFF] -- DEC
emit [0xc0 + (index dst + 8)]

Putting everything together we’ll JIT our function and call it from Haskell.

main :: IO ()
main = do

mem <- allocateMemory jitsize -- create jit memory
let Right st = assemble mem arith -- assemble symbolic program
fn <- jit mem (_mach st) -- jit compile
res <- fn -- call function
putStrLn $ ”Result: ” <> show res

And running it we get the result.

$ stack exec example
Result: 40
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Jumps & Loops Now let’s write some logic that uses control flow and jumps between labeled blocks
of instructions. Consider the factorial function that takes the value to compute in the rcx register and
computes the result my repeatedly multiply the rax until reaching one. To do this we create a block
.factor and use the loop instruction.

factorial:
mov rcx, $5
mov rax, $1

.factor:
mul rax
loop .factor
ret

Let’s look at the machine code for this assembly. Notice that the loop instruction takes a relative address
in memory fc (i.e. go back 4 instructions) as it’s operand.

00000000004004ed <main>:
4004ed: b9 05 00 00 00 mov ecx,0x5
4004f2: b8 01 00 00 00 mov eax,0x1

00000000004004f7 <.factor>:
4004f7: f7 e1 mul ecx
4004f9: e2 fc loop 4004f7 <.factor>
4004fb: c3 ret

So let’s create a label function which simply reaches into the monad and grabs the current pointer
location in the JIT memory that we’re at.

label :: X86 Val
label = do

addr <- gets _memoff
ptr <- gets _memptr
return (A addr)

When given an memory address, the loop instruction then simply emits the instruction simply emits
the 0xE2 opcode and calculates the delta of the source and destination and the emits it’s value as the
immediate data for the instruction.

loop :: Val -> X86()
loop (A dst) = do

emit [0xE2]
src <- gets _memoff
ptr <- gets _memptr
emit [fromIntegral $ dst - src]
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Now we’ll create the symbolic representation of this factorial assembly our in Haskell DSL and param-
eterize it by a Haskell integer to compute.

factorial :: Int64 -> X86 ()
factorial n = do

mov rcx (I n)
mov rax (I 1)
l1 <- label
mul rcx
loop l1
ret

Putting everything together we’ll JIT our function and call it from Haskell.

main :: IO ()
main = do

mem <- allocateMemory jitsize
let Right st = assemble mem (factorial 5)
fn <- jit mem (_mach st)
res <- fn
putStrLn $ ”Result: ” <> show res

And running it we get the result.

$ stack exec example
Result: 120

Calling Convention Final task is to be able to call out of the JIT into either Haskell runtime or a
given C function pointer. To do this we need to look at the calling convention for moving in out of
other logic and setting up the registers so we can hand them off to another subroutine and restore then
when we jump back. In the 64 bit System V ABI calling convention, the first 5 arguments get passed
in registers in order rdi, rsi, rdx rcx, r8, and r9. Subsequent arguments get passed on the stack.

For our call function we simply compute the delta of our given position and the address of the function
we want to jump into.

call :: Val -> X86 ()
call (A dst) = do

emit [0xE8]
src <- gets _memoff
imm (dst - (src + 5))

call _ = nodef

Before and after we call the function we are responsible for handling it’s arguments and the push and
popping the stack frame on entry and exit. On entry we call the function prologue and on exit we call
the epilogue, in between lies the function logic.
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prologue :: X86 ()
prologue = do

push rbp
mov rbp rsp

epilogue :: X86 ()
epilogue = do

pop rax
mov rsp rbp
pop rbp
ret

So for example let’s call out to the libc printf function passing a string pointer to it from inside our
JIT. To do this we use dlsym to grab the symbol reference and then pass it as an address to the call
instruction after pushing the string pointer on the argument stack.

printf :: Word32 -> Word32 -> X86 ()
printf fnptr msg = do

push rbp
mov rbp rsp
mov rdi (A msg)
call (A fnptr)
pop rbp
mov rax (I 0)
ret

Putting everything together we invoke it by grabbing the printf address and passing a pointer to
Haskell string using our asciz function.

main :: IO ()
main = do

let jitsize = 256*1024

fn <- extern ”printf”
msg <- asciz ”Hello Haskell”
mem <- allocateMemory jitsize

let Right st = assemble mem (printf fn msg)
join $ jit mem (_mach st)

Running it we get our friendly greeting by reaching outside the JIT.

$ stack exec example
Hello Haskell
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LLVM

LLVM is a statically typed intermediate representation and an associated toolchain for manipulating,
optimizing and converting this intermediate form into native code.

So for example consider a simple function which takes two arguments, adds them, and xors the result.
Writing in IR it would be formed as such:

define i32 @test1(i32 %x, i32 %y, i32 %z) {
%a = and i32 %z, %x
%b = and i32 %z, %y
%c = xor i32 %a, %b
ret i32 %c

}

Running this through the LLVM toolchain we can target our high level IR into multiple different
assembly codes mapping onto various architectures and CPUs all from the same platform agnostic
intermediate representation.

x86-64

test1:
.cfi_startproc
andl %edx, %esi
andl %edx, %edi
xorl %esi, %edi
movl %edi, %eax
ret

ARM

test1:
and r1, r2, r1
and r0, r2, r0
eor r0, r0, r1
mov pc, lr

PowerPC

.L.test1:
.cfi_startproc
and 4, 5, 4
and 3, 5, 3
xor 3, 3, 4
blr
.long 0
.quad 0
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A uncommonly large amount of hardware manufacturers and software vendors (Adobe, AMD, Apple,
ARM, Google, IBM, Intel, Mozilla, Qualcomm, Samsung, Xilinx) have come have converged on the
LLVM toolchain as service agnostic way to talk about generating machine code.

What’s even more impressive is that many of the advances in compiler optimizations and static analysis
have been mechanized in the form of optimization passes so that all compilers written on top of the
LLVM platform can take advantage of the same advanced optimizers that would often previously have
to be developed independently.

Types

Primitive

i1 ; Boolean type
i8 ; char
i32 ; 32 bit integer
i64 ; 64 bit integer
float ; 32 bit
double ; 64 bit

Arrays

[10 x float] ; Array of 10 floats
[10 x [20 x i32]] ; Array of 10 arrays of 20 integers.

Structs

{float, i64} ; structure
{float, {double, i3}} ; nested structure
<{float, [2 x i3]}> ; packed structure

Vectors

<4 x double>
<8 x float>

Pointers

float* ; Pointer to a float
[25 x float]* ; Pointer to an array

e traditional void* pointer in C is a i8* pointer in LLVM with the appropriate casts.

Constants
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[i1 true, i1 false] ; constant bool array
<i32 42, i32 10> ; constant vector
float 1.23421e+2 ; floating point constant
null ; null pointer constant

e zeroinitializer can be used to instantiate any type to the appropriate zero of any type.

<8 x float> zeroinitializer ; Zero vector

Named Types

%vec4 = type <4 x i32>
%pair = type { i32, i32 }

Recursive types declarations are supported.

%f = type { %f*, i32 }

Platform Information

target datalayout = ”
e-
p : 64 : 64 : 64-
i1 : 8 : 8-
i8 : 8 : 8-
i16 : 16 : 16-
i32 : 32 : 32-
i64 : 64 : 64-
f32 : 32 : 32-
f64 : 64 : 64-
v64 : 64 : 64-
v128 : 128 : 128-
a0 : 0 : 64-
s0 : 64 : 64-
f80 : 128 : 128-
n8 : 16 : 32 : 64-
S128
”

target triple = ”x86_64-unknown-linux-gnu”

Specifications are delimited by the minus sign -.

• e e indicates the platform is little-endian.
• e i<n> indicate the bitsize and alignment of the integer type.
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• e f<n> indicate the bitsize and alignment of the floating point type.
• e p<n> indicate the bitsize and alignment of the pointer type.
• e v<n> indicate the bitsize and alignment of the vector type.
• e a<n> indicate the bitsize and alignment of the aggregate type.
• e n<n> indicate the widths of the CPU registers.
• e S<n> indicate the alignment of the stack.

Variables

Symbols used in an LLVM module are either global or local. Global symbols begin with @ and local
symbols begin with %. All symbols must be defined or forward declared.

Instructions in LLVM are either numbered sequentially (%0, %1, …) or given explicit variable names
(%a, %foo, ..). For example the arguments to the following function are named values, while the result
of the add instructions unnamed.

define i32 @add(i32 %a, i32 %b) {
%1 = add i32 %a, %b
ret i32 %1

}

Instructions

%result = add i32 10, 20

Logical

• shl
• lshr
• ashr
• and
• or
• xor

Binary Operators

• add
• fadd
• sub
• fsub
• mul
• fmul
• udiv
• sdiv
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• fdiv
• urem
• srem
• frem

Comparison

op unsigned signed floating
lt ULT SLT OLT
gt UGT SGT OGT
le ULE SLE OLE
ge UGE SGE OGE
eq EQ EQ OEQ
ne NE NE ONE

%c = udiv i32 %a, %b
%d = sdiv i32 %a, %b
%e = fmul float %a, %b
%f = fdiv float %a, %b

%g = icmp eq i32 %a, %b
%i = icmp slt i32 %a, %b
%j = icmp ult i32 %a, %b
%k = fcmp olt float, %a, %b

Data

i1 1
i32 299792458
float 7.29735257e-3
double 6.62606957e-34

Blocks

Function definitions in LLVM introduce a sequence of labeled basic blocks containing any number
of instructions and a final terminator instruction which indicates how control flow yields after the
instructions of the basic block are evaluated.

define i1 @foo() {
entry:

br label %next
next:
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br label %return
return:

ret i1 0
}

A basic block has either zero (for entry block) or a fixed number of predecessors. A graph with basic blocks
as nodes and the predecessors of each basic block as edges constitutes a control flow graph. LLVM’s opt
command can be used to dump this graph using graphviz.

$ opt -view-cfg module.ll
$ dot -Tpng module.dot -o module.png

We say a basic block A dominates a different block B in the control flow graph if it’s impossible to reach
B without passing through “A, equivalently A is the dominator of B.

All logic in LLVM is written in static single assignment (SSA) form. Each variable is assigned precisely
once, and every variable is defined before it is used. Updating any existing variable reference creates a
new reference with for the resulting output.

Control Flow

• Unconditional Branch
• Conditional Branch
• Switch
• Return
• Phi
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Return

e ret function simply exits the current function yielding the current value to the virtual stack.

define i1 @foo() {
ret i1 0

}
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Unconditional Branch

e unconditional branch br simply jumps to any basic block local to the function.

define i1 @foo() {
entry:
br label %next

next:
br label %return

return:
ret i1 0

}
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Conditional Branch

e conditional branch br jumps to one of two basic blocks based on whether a test condition is true
or false. is corresponds the logic of a traditional “if statement”.

define i32 @foo() {
start:

br i1 true, label %left, label %right
left:

ret i32 10
right:

ret i32 20
}

183



Switch

e switch statement switch jumps to any number of branches based on the equality of value to a
jump table matching values to basic blocks.

define i32 @foo(i32 %a) {
entry:

switch i32 %a, label %default [
i32 0, label %f
i32 1, label %g
i32 2, label %h

]
f:

ret i32 1
g:

ret i32 2
h:

ret i32 3
default:

ret i32 0
}
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Phi

A phi node selects a value based on the predecessor of the current block.

define i32 @foo() {
start:

br i1 true, label %left, label %right
left:

%plusOne = add i32 0, 1
br label %merge

right:
br label %merge

merge:
%join = phi i32 [ %plusOne, %left ], [ -1, %right ]
ret i32 %join

}
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Loops

e traditional while and for loops can be written in terms of the simpler conditional branching
constructrs. For example in C we would write:

int count(int n)
{

int i = 0;
while(i < n)
{
i++;

}
return i;

}

Whereas in LLVM we write:

define i32 @count(i32 %n) {
entry:

br label %loop

loop:
%i = phi i32 [ 1, %entry ], [ %nextvar, %loop ]
%nextvar = add i32 %i, 1

%cmptmp = icmp ult i32 %i, %n
%booltmp = zext i1 %cmptmp to i32
%loopcond = icmp ne i32 %booltmp, 0

br i1 %loopcond, label %loop, label %afterloop

afterloop:
ret i32 %i

}

186



187



Select

Selects the first value if the test value is true, the second if false.

%x = select i1 true, i8 10, i8 20 ; gives 10
%y = select i1 false, i8 10, i8 20 ; gives 20

Calls

• ccc: e C calling convention
• fastcc: e fast calling convention

%result = call i32 @exp(i32 7)

Memory

LLVM uses the traditional load/store model:

• load: Load a typed value from a given reference
• store: Store a typed value in a given reference
• alloca: Allocate a pointer to memory on the virtual stack

%ptr = alloca i32
store i32 3, i32* %ptr
%val = load i32* %ptr

Specific pointer alignment can be specified:

%ptr = alloca i32, align 1024

For allocating in main memory we use an external reference to the C stdlib memory allocator which
gives us back a (i8*).

%ptr = call i8* @malloc(i32 %objectsize)

For structures:

extractvalue {i32, float} %a, 0 ; gives i32
extractvalue {i32, {float, double}} %a, 0, 1 ; gives double
extractvalue [2 x i32] %a, 0 ; yields i32

%x = insertvalue {i32, float} %b, float %val, 1 ; gives {i32 1, float %b}
%y = insertvalue {i32, float} zeroinitializer, i32 1, 0 ; gives {i32 1, float 0}
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GetElementPtr

Casts

• trunc
• zext
• sext
• fptoui
• fptosi
• uitofp
• sitofp
• fptrunc
• fpext
• ptrtoint
• inttoptr
• bitcast

trunc i32 257 to i8 ; yields i8 1
zext i32 257 to i64 ; yields i64 257
sext i8 -1 to i16 ; yields i16 65535
bitcast <2 x i32> %a to i64 ; yields i64 %a

Toolchain

$ llc example.ll -o example.s # compile
$ lli example.ll # execute
$ opt -S example.bc -o example.ll # to assembly
$ opt example.ll -o example.bc # to bitcode
$ opt -O3 example.ll -o example.opt.ll -S # run optimizer

Individual modules can be linked together.

$ llvm-link a.ll b.ll -o c.ll -S

Link time optimization.

$ clang -O4 -emit-llvm a.c -c -o a.bc
$ clang -O4 -emit-llvm a.c -c -o a.bc
$ llvm-link a.bc b.bc -o all.bc
$ opt -std-compile-opts -std-link-opts -O3 all.bc -o optimized.bc

e clang project is a C compiler that targets LLVM as it’s intermediate representation. In the case
where we’d like to know how some specific C construct maps into LLVM IR we can ask clang to dump
its internal IR using the -emit-llvm flag.
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# clang -emit-llvm -S add.c -o -
int add(int x)
{

return x+1;
}

; ModuleID = ’add.c’
define i32 @add(i32 %x) nounwind uwtable {
entry:

%x.addr = alloca i32, align 4
store i32 %x, i32* %x.addr, align 4
%0 = load i32* %x.addr, align 4
%add = add nsw i32 %0, 1
ret i32 %add

}

LLVM is using a C++ API underneath the hood of all these tools. If you need to work directly with the
API it can be useful to be able to expand out the LLVM IR into the equivalent C++ code.

$ llc example.ll -march=cpp -o -

define i32 @test1(i32 %x, i32 %y, i32 %z) {
%a = and i32 %z, %x
%b = and i32 %z, %y
%c = xor i32 %a, %b
ret i32 %c

}

Function* func_test1 = mod->getFunction(”test1”);
if (!func_test1) {
func_test1 = Function::Create(
/*Type=*/FuncTy_0,
/*Linkage=*/GlobalValue::ExternalLinkage,
/*Name=*/”test1”, mod);

func_test1->setCallingConv(CallingConv::C);
}
AttrListPtr func_test1_PAL;
func_test1->setAttributes(func_test1_PAL);

{
Function::arg_iterator args = func_test1->arg_begin();
Value* int32_x = args++;
int32_x->setName(”x”);
Value* int32_y = args++;
int32_y->setName(”y”);
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Value* int32_z = args++;
int32_z->setName(”z”);

BasicBlock* label_1 = BasicBlock::Create(mod->getContext(), ””,func_test1,0);

BinaryOperator* int32_a = BinaryOperator::Create(
Instruction::And, int32_z, int32_x, ”a”, label_1);

BinaryOperator* int32_b = BinaryOperator::Create(
Instruction::And, int32_z, int32_y, ”b”, label_1);

BinaryOperator* int32_c = BinaryOperator::Create(
Instruction::Xor, int32_a, int32_b, ”c”, label_1);

ReturnInst::Create(mod->getContext(), int32_c, label_1);

}

llvm-general

e LLVM bindings for Haskell are split across two packages:

• llvm-general-pure is a pure Haskell representation of the LLVM IR.

• llvm-general is the FFI bindings to LLVM required for constructing the C representation of the
LLVM IR and performing optimization and compilation.

llvm-general-pure does not require the LLVM libraries be available on the system.

GHCi can have issues with the FFI and can lead to errors when working with llvm-general. If you
end up with errors like the following, then you are likely trying to use GHCi or runhaskell and it is
unable to link against your LLVM library. Instead compile with standalone ghc.

Loading package llvm-general-3.3.8.2
... linking
... ghc: /usr/lib/llvm-3.3/lib/libLLVMSupport.a: unknown symbol ‘_ZTVN4llvm14error_categoryE’
ghc: unable to load package ‘llvm-general-3.3.8.2’

Code Generation (LLVM)

Resources

• LLVM Language Reference
• Implementing a JIT Compiled Language with Haskell and LLVM
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