
What I Wish I Knew When Learning Haskell
Stephen Diehl

Contents
Basics 11

Cabal . 11
Stack . 16
Flags . 17
Hackage . 18
GHCi . 19
Editor Integration . 22
Bottoms . 22
Exhaustiveness . 24
Debugger . 25
Stacktraces . 25
Trace . 26
Type Holes . 27
Deferred Type Errors . 28
ghcid . 28
Haddock . 29

Monads 30
Eightfold Path to Monad Satori . 30
Monadic Myths . 31
Laws . 31
Do Notation . 32
Maybe . 33
List . 34
IO . 35
Whats the point? . 35
Reader Monad . 36
Writer Monad . 37
State Monad . 38
Monad Tutorials . 39

Monad Transformers 41
mtl / transformers . 41
Transformers . 42
Basics . 43
ReaderT . 44
Newtype Deriving . 45
Efficiency . 47
Monad Morphisms . 48

Language Extensions 49
The Benign . 49
The Dangerous . 50
Type Inference . 50

1

Monomorphism Restriction . 51
Extended Defaulting . 52
Safe Haskell . 53
Partial Type Signatures . 53
Recursive Do . 55
Applicative Do . 55
Pattern Guards . 55
ViewPatterns . 56
TupleSections . 56
MultiWayIf . 57
EmptyCase . 57
LambdaCase . 57
NumDecimals . 58
PackageImports . 58
RecordWildCards . 58
NamedFieldPuns . 59
PatternSynonyms . 59
DeriveTraversable . 61
DeriveFoldable . 61
DeriveFunctor . 61
DeriveGeneric . 61
DeriveAnyClass . 61
StaticPointers . 61
DuplicateRecordFields . 61
OverloadedLabels . 61
Cpp . 62
Historical Extensions . 63

Type Classes 63
Minimal Annotations . 63
FlexibleInstances . 64
FlexibleContexts . 64
OverlappingInstances . 65
IncoherentInstances . 66
TypeSynonymInstances . 67

Laziness 67
Strictness . 68
Seq and WHNF . 68
Strictness Annotations . 71
Strict Haskell . 72
Deepseq . 73
Irrefutable Patterns . 73

Prelude 74
What to Avoid? . 74

2

What Should be in Base . 75
Custom Preludes . 75
Partial Functions . 76
Safe . 76
Boolean Blindness . 77
Foldable / Traversable . 78
Corecursion . 81
split . 82
monad-loops . 82

Strings 83
String . 83
Import Conventions . 84
Text . 85
Text.Builder . 85
ByteString . 86
Printf . 86
Overloaded Lists . 87
String Conversions . 87

Applicatives 88
Alternative . 90
Arrows . 91
Bifunctors . 92
Polyvariadic Functions . 93

Error Handling 94
Control.Exception . 94
Exceptions . 95
ExceptT . 96
spoon . 97

Advanced Monads 98
Function Monad . 98
RWS Monad . 99
Cont . 100
MonadPlus . 101
MonadFix . 103
ST Monad . 104
Free Monads . 105
Indexed Monads . 108
lifted-base . 110

Quantification 111
Universal Quantification . 111
Free theorems . 112

3

Type Systems . 112
Rank-N Types . 113
Existential Quantification . 115
Impredicative Types . 117
Scoped Type Variables . 118

GADTs 119
GADTs . 119
Kind Signatures . 121
Void . 122
Phantom Types . 122
Typelevel Operations . 124

Interpreters 125
HOAS . 126
PHOAS . 127
Final Interpreters . 128
Finally Tagless . 129
Datatypes . 130
F-Algebras . 131
recursion-schemes . 136
Hint and Mueval . 138

Testing 139
QuickCheck . 139
SmallCheck . 140
QuickSpec . 142
Criterion . 145
Tasty . 148
silently . 149

Type Families 149
MultiParam Typeclasses . 149
Type Families . 153
Injectivity . 155
Roles . 155
Monotraversable . 157
NonEmpty . 158
Overloaded Lists . 159
Manual Proofs . 159
Constraint Kinds . 161
TypeFamilyDependencies . 163

Promotion 163
Higher Kinded Types . 163
Kind Polymorphism . 164

4

Data Kinds . 165
Size-Indexed Vectors . 167
Typelevel Numbers . 169
Typelevel Strings . 170
Custom Errors . 170
Type Equality . 172
Proxies . 172
Promoted Syntax . 173
Singleton Types . 174
Closed Type Families . 178
Kind Indexed Type Families . 180
Promoted Symbols . 181
HLists . 185
Typelevel Dictionaries . 186
Advanced Proofs . 188
Liquid Haskell . 192

Generics 193
Typeable . 194
Dynamic . 195
Data . 196
Syb . 199
Generic . 200
Generic Deriving . 204
Uniplate . 206

Mathematics 210
Numeric Tower . 210
Integer . 211
Complex . 211
Scientific . 213
Statistics . 213
Constructive Reals . 215
SAT Solvers . 215
SMT Solvers . 216

Data Structures 217
Map . 217
Tree . 218
Set . 219
Vector . 219
Mutable Vectors . 220
Unordered-Containers . 221
Hashtables . 222
Graphs . 223
Graph Theory . 226

5

DList . 228
Sequence . 228

FFI 228
Pure Functions . 228
Storable Arrays . 229
Function Pointers . 231

Concurrency 232
Sparks . 232
Threadscope . 233
Strategies . 235
STM . 237
Monad Par . 238
async . 240

Graphics 242
Diagrams . 242

Parsing 243
Parsec . 243
Custom Lexer . 245
Simple Parsing . 247
Generic Parsing . 249
Attoparsec . 251
Optparse Applicative . 254
Happy & Alex . 256
Configurator . 259

Streaming 260
Lazy IO . 260
Pipes . 261
Safe Pipes . 263
Conduits . 264

Data Formats 265
JSON . 265
Yaml . 272
CSV . 274

Network & Web Programming 276
HTTP . 276
Blaze . 277
Warp . 278
Scotty . 278
Hastache . 279

6

Databases 281
Postgres . 281
Redis . 285
Acid State . 286

GHC 288
Block Diagram . 288
Core . 290
Inliner . 294
Dictionaries . 295
Specialization . 297
Static Compilation . 298
Unboxed Types . 299
IO/ST . 303
ghc-heap-view . 304
STG . 306
Worker/Wrapper . 308
Z-Encoding . 309
Cmm . 310
Optimization Hacks . 317
Interface Files . 318

Profiling 319
EKG . 319
RTS Profiling . 320

Languages 322
unbound . 322
unbound-generics . 324
llvm-general . 327
pretty . 328
wl-pprint-text . 331
Haskeline . 331
Repline . 331

Template Haskell 333
Perils of Metaprogramming . 333
Quasiquotation . 334
language-c-quote . 337
Template Haskell . 339
Antiquotation . 344
Templated Type Families . 347
Templated Type Classes . 350
Multiline Strings . 351
git-embed . 352

7

Categories 353
Algebraic Relations . 353
Categories . 354
Isomorphisms . 355
Duality . 356
Functors . 356
Natural Transformations . 357
Yoneda Lemma . 358
Kleisli Category . 359
Resources . 360

Other Languages 360
Haskell . 360
OCaml . 361
Standard ML . 361
Agda . 362
Coq . 362
Idris . 362
Rust . 363
Purescript . 363
Elm . 364
Python . 364
R . 364
Julia . 365
Erlang . 365
Clojure . 365
Swift . 366
C# . 366
C++ . 366
Go . 366
Scala . 367
Javascript . 367

Code 367

8

Stephen Diehl (@smdiehl)
This is the fourth draft of this document.
PDF Version

License
This code and text are dedicated to the public domain. You can copy, modify,
distribute and perform the work, even for commercial purposes, all without
asking permission.
You may copy and paste any code here verbatim into your codebase, wiki, blog,
book or Haskell musical production as you see fit. The Markdown and Haskell
source is available on Github. Pull requests are always accepted for changes and
additional content. This is a living document.

Changelog
2.3

• Stack
• Stackage
• ghcid
• Nix (Removed)
• Aeson (Updated)
• Language Extensions (Updated)
• Type Holes (Updated)
• Partial Type Signatures
• Pattern Synonyms (Updated)
• Unboxed Types (Updated)
• Vim Integration (Updated)
• Emacs Integration (Updated)
• Strict Language Extension
• Injective Type Families
• Custom Type Errors
• Language Comparisons
• Recursive Do
• Applicative Do
• LiquidHaskell
• Cpp
• Minimal Pragma
• Typeclass Extensions
• ExtendedDefaultRules
• mmorph
• integer-gmp
• Static Pointers
• spoon

9

https://github.com/sdiehl/wiwinwlh/tree/master/src

• monad-control
• monad-base
• postgresql-simple
• hedis
• happy/alex
• configurator
• string-conv
• resource-pool
• resourcet
• optparse-applicative
• hastache
• silently
• Mulitiline Strings
• git-embed
• Coercible
• -fdefer-type-errors

2.2
Sections that have had been added or seen large changes:

• Irrefutable Patterns
• Hackage
• Exhaustiveness
• Stacktraces
• Laziness
• Skolem Capture
• Foreign Function Pointers
• Attoparsec Parser
• Inline Cmm
• PrimMonad
• Specialization
• unbound-generics
• Editor Integration
• EKG
• Nix
• Haddock
• Corecursion
• Category
• Arrows
• Bifunctors
• ExceptT
• hint / mueval
• Roles
• Higher Kinds
• Kind Polymorphism
• Numeric Tower

10

• SAT Solvers
• Graph
• Sparks
• Threadscope
• Generic Parsers
• GHC Block Diagram
• GHC Debug Flags
• Core
• Inliner
• Unboxed Types
• Runtime Memory Representation
• ghc-heapview
• STG
• Worker/Wrapper
• Z-Encoding
• Cmm
• Runtime Optimizations
• RTS Profiling
• Algebraic Relations

Basics

Cabal

Historically Cabal had a component known as cabal-install that has largely been
replaced by Stack. The following use of Cabal sandboxes is left for historical
reasons and can often be replaced by modern tools.
Cabal is the build system for Haskell.
For example to install the parsec package from Hackage to our system invoke
the install command:
$ cabal install parsec # latest version
$ cabal install parsec==3.1.5 # exact version

The usual build invocation for Haskell packages is the following:
$ cabal get parsec # fetch source
$ cd parsec-3.1.5

$ cabal configure
$ cabal build
$ cabal install

To update the package index from Hackage run:
$ cabal update

11

http://hackage.haskell.org/package/parsec

To start a new Haskell project run
$ cabal init
$ cabal configure

A .cabal file will be created with the configuration options for our new project.
The latest feature of Cabal is the addition of Sandboxes (in cabal > 1.18)
which are self contained environments of Haskell packages separate from the
global package index stored in the ./.cabal-sandbox of our project’s root. To
create a new sandbox for our cabal project run.
$ cabal sandbox init

In addition the sandbox can be torn down.
$ cabal sandbox delete

Invoking the cabal commands when in the working directory of a project with
a sandbox configuration set up alters the behavior of cabal itself. For example
the cabal install command will only alter the install to the local package
index and will not touch the global configuration.
To install the dependencies from the cabal file into the newly created sandbox
run:
$ cabal install --only-dependencies

Dependencies can also be built in parallel by passing -j<n> where n is the
number of concurrent builds.
$ cabal install -j4 --only-dependencies

Let’s look at an example cabal file, there are two main entry points that any
package may provide: a library and an executable. Multiple executables can
be defined, but only one library. In addition there is a special form of executable
entry point Test-Suite which defines an interface for unit tests to be invoked
from cabal.
For a library, the exposed-modules field in the cabal file indicates which mod-
ules within the package structure will be publicly visible when the package is
installed. These are the user-facing APIs that we wish to expose to downstream
consumers.
For an executable the main-is field indicates the Main module for the project
that exports the main function to run for the executable logic of the applica-
tion. Every module in the package must be listed in one of other-modules,
exposed-modules or main-is fields.
name: mylibrary
version: 0.1
cabal-version: >= 1.10
author: Paul Atreides
license: MIT

12

license-file: LICENSE
synopsis: The code must flow.
category: Math
tested-with: GHC
build-type: Simple

library
exposed-modules:
Library.ExampleModule1
Library.ExampleModule2

build-depends:
base >= 4 && < 5

default-language: Haskell2010

ghc-options: -O2 -Wall -fwarn-tabs

executable "example"
build-depends:

base >= 4 && < 5,
mylibrary == 0.1

default-language: Haskell2010
main-is: Main.hs

Test-Suite test
type: exitcode-stdio-1.0
main-is: Test.hs
default-language: Haskell2010
build-depends:

base >= 4 && < 5,
mylibrary == 0.1

To run the “executable” for a library under the cabal sandbox:
$ cabal run
$ cabal run <name>

To load the “library” into a GHCi shell under the cabal sandbox:
$ cabal repl
$ cabal repl <name>

The <name> metavariable is either one of the executable or library declarations
in the cabal file, and can optionally be disambiguated by the prefix exe:<name>
or lib:<name> respectively.
To build the package locally into the ./dist/build folder execute the build
command.

13

$ cabal build

To run the tests, our package must itself be reconfigured with the
--enable-tests and the build-depends from the Test-Suite must be
manually installed if not already.
$ cabal install --only-dependencies --enable-tests
$ cabal configure --enable-tests
$ cabal test
$ cabal test <name>

In addition arbitrary shell commands can also be invoked with the GHC envi-
ronmental variables set up for the sandbox. Quite common is to invoke a new
shell with this command such that the ghc and ghci commands use the sandbox
(they don’t by default, which is a common source of frustration).
$ cabal exec
$ cabal exec sh # launch a shell with GHC sandbox path set.

The haddock documentation can be built for the local project by executing the
haddock command, it will be built to the ./dist folder.
$ cabal haddock

When we’re finally ready to upload to Hackage (presuming we have a Hackage
account set up), then we can build the tarball and upload with the following
commands:
$ cabal sdist
$ cabal upload dist/mylibrary-0.1.tar.gz

Sometimes you’d also like to add a library from a local project into a sandbox.
In this case the add-source command can be used to bring it into the sandbox
from a local directory.
$ cabal sandbox add-source /path/to/project

The current state of a sandbox can be frozen with all current package constraints
enumerated.
$ cabal freeze

This will create a file cabal.config with the constraint set.
constraints: mtl ==2.2.1,

text ==1.1.1.3,
transformers ==0.4.1.0

Using the cabal repl and cabal run commands is preferable but sometimes
we’d like to manually perform their equivalents at the shell, there are several
useful aliases that rely on shell directory expansion to find the package database
in the current working directory and launch GHC with the appropriate flags:

14

alias ghc-sandbox="ghc -no-user-package-db -package-db .cabal-sandbox/*-packages.conf.d"
alias ghci-sandbox="ghci -no-user-package-db -package-db .cabal-sandbox/*-packages.conf.d"
alias runhaskell-sandbox="runhaskell -no-user-package-db -package-db .cabal-sandbox/*-packages.conf.d"

There is also a zsh script to show the sandbox status of the current working
directory in our shell.
function cabal_sandbox_info() {

cabal_files=(*.cabal(N))
if [$#cabal_files -gt 0]; then

if [-f cabal.sandbox.config]; then
echo "%{$fg[green]%}sandboxed%{$reset_color%}"

else
echo "%{$fg[red]%}not sandboxed%{$reset_color%}"

fi
fi

}

RPROMPT="\$(cabal_sandbox_info) $RPROMPT"

The cabal configuration is stored in $HOME/.cabal/config and contains various
options including credential information for Hackage upload. One addition to
configuration is to completely disallow the installation of packages outside of
sandboxes to prevent accidental collisions.
-- Don't allow global install of packages.
require-sandbox: True

A library can also be compiled with runtime profiling information enabled. More
on this is discussed in the section on Concurrency and profiling.
library-profiling: True

Another common flag to enable is the documentation which forces the local
build of Haddock documentation, which can be useful for offline reference. On a
Linux filesystem these are built to the /usr/share/doc/ghc-doc/html/libraries/
directory.
documentation: True

If GHC is currently installed the documentation for the Prelude and Base li-
braries should be available at this local link:
/usr/share/doc/ghc-doc/html/libraries/index.html
See:

• An Introduction to Cabal Sandboxes
• Storage and Identification of Cabalized Packages

15

file:///usr/share/doc/ghc-doc/html/libraries/index.html
http://coldwa.st/e/blog/2013-08-20-Cabal-sandbox.html
http://www.vex.net/~trebla/haskell/sicp.xhtml

Stack

Stack is a new approach to Haskell package structure that emerged in 2015.
Instead of using a rolling build like cabal-install stack breaks up sets of
packages into release blocks that guarantee internal compatibility between sets
of packages. The package solver for Stack uses a different strategy for resolving
dependencies than cabal-install has used historically and is generally more
robust.
Contrary to much misinformation, Stack does not replace Cabal as the
build system and uses it under the hood. It just makes the process of inte-
grating with third party packages and resolving their dependencies much more
streamlined.

Install
To install stack on Ubuntu Linux:
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 575159689BEFB442 # get fp complete key
echo 'deb http://download.fpcomplete.com/ubuntu trusty main'|sudo tee /etc/apt/sources.list.d/fpco.list # add appropriate source repo
sudo apt-get update && sudo apt-get install stack -y

For other operating systems see the offocial install directions here

Usage
Once Stack installed it can be used to setup a build environment on top of your
existing project’s cabal file by running:
stack init

An example stack.yaml file for GHC 7.10.2 would look like the following.
resolver: lts-3.14
flags: {}
extra-package-dbs: []
packages: []
extra-deps: []

Most of the common libraries used in everyday development The extra-deps
package can be used to add Hackage dependencies that are not in the Stackage
repository. They are specified by the package and the version key. For instance
the zenc package could be added to the stack build
extra-deps:
- zenc-0.1.1

Stack can be used to install packages and executables into the either current
build environment or the global environemnt. For example the following installs
the hint linter executable and places it in on the PATH.

16

http://docs.haskellstack.org/en/stable/install_and_upgrade/

$ stack install hint

To check the set of dependencies
$ stack list-dependencies

Just as with Cabal project the build and debug process can be orchestrated
using stack commands.
$ stack build # Build a cabal target
$ stack repl # Launch ghci
$ stack ghc # Invoke the standalone compiler in stack environment
$ stack exec bash # Execute a shell command with the stack GHC environment variables
$ stack build --file-watch # Build on every filesystem change

To visualize the dependency graph use the dot command pipe the output into
graphviz and your favorite image viewer:
$ stack dot --external | dot -Tpng | feh -

Flags

The most commonly used GHC compiler flags for detecting common code errors
are the following:

Flag Description
-fwarn-tabs Emit warnings of tabs instead of spaces in the source code.
-fwarn-unused-imports Warn about libraries imported without being used
-fwarn-name-shadowing Warn on duplicate names in nested bindings
-fwarn-incomplete-uni-patterns Emit warnings for incomplete patterns in lambdas or pattern bindings
-fwarn-incomplete-patterns Warn on non-exhaustive patterns
-fwarn-overlapping-patterns Warn on pattern matching branches that overlap
-fwarn-incomplete-record-updates Warn when records are not instantiated with all fields
-fdefer-type-errors Turn type errors into warnings
-fwarn-missing-signatures Warn about toplevel missing type signatures
-fwarn-monomorphism-restriction Warn when the monomorphism restriction is applied implicitly
-fwarn-orphans Warn on orphan typeclass instances.
-fforce-recomp Force recompilation regardless of timestamp
-fno-code Don’t doing code generation, just parse and typecheck.
-fobject-code Don’t doing code generation, just parse and typecheck.

Like most compilers -Wall can be used to enable all warnings. Although some
of the enabled warnings are somewhat overzealous like -fwarn-unused-do-bind
and -fwarn-unused-matches which typically wouldn’t correspond to errors or
failures.
Any of these can be added to the cabal file using the ghc-options section of a
Cabal target. For example

17

library mylib

ghc-options:
-fwarn-tabs
-fwarn-unused-imports
-fwarn-missing-signatures
-fwarn-name-shadowing
-fwarn-incomplete-patterns

For debugging GHC internals, see the commentary on GHC internals. These
are simply the most useful, for all flags see the official reference.

Hackage

Hackage is the upstream source of open source Haskell packages. Being a evolv-
ing language, Hackage is many things to many people but there seem to be two
dominant philosophies of uploaded libraries.
Reusable Code / Building Blocks
Libraries exist as stable, community supported, building blocks for building
higher level functionality on top of an edifice which is common and stable. The
author(s) of the library have written the library as a means of packaging up
their understanding of a problem domain so that others can build on their
understanding and expertise.
A Staging Area / Request for Comments
A common philosophy is that Hackage is a place to upload experimental li-
braries up as a means of getting community feedback and making the code
publicly available. The library author(s) often rationalize putting these kind of
libraries up undocumented, often not indicating what the library even does, by
simply stating that they intend to tear it all down and rewrite it later. This
unfortunately means a lot of Hackage namespace has become polluted with
dead-end bit-rotting code. Sometimes packages are also uploaded purely for
internal use or to accompany a paper, or just to integrate with the cabal build
system. These are often left undocumented as well.
Many other language ecosystems (Python, Javascript, Ruby) favor the former
philosophy, and coming to Haskell can be kind of unnerving to see thousands of
libraries without the slightest hint of documentation or description of purpose. It
is an open question about the cultural differences between the two philosophies
and how sustainable the current cultural state of Hackage is.
Needless to say there is a lot of very low-quality Haskell code and documentation
out there today, and being conservative in library assessment is a necessary skill.
That said, there is also quite a few phenomenal libraries on Hackage that are
highly curated by many people.

18

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/flag-reference.html

As a rule of thumb if the Haddock docs for the library does not have a minimal
worked example, it is usually safe to assume that it is a RFC-style library
and probably should be avoided in production-grade code.
As another rule of thumb if the library predates the text library circa 2007
it probably should be avoided in production code. The way we write Haskell
has changed drastically since the early days.

GHCi

GHCi is the interactive shell for the GHC compiler. GHCi is where we will
spend most of our time in every day development.

Command Shortcut Action
:reload :r Code reload
:type :t Type inspection
:kind :k Kind inspection
:info :i Information
:print :p Print the expression
:edit :e Load file in system editor.
:load :l Set the active Main module in the REPL.
:add :ad Load a file into the REPL namespace.
:browse :bro Browse all available symbols in the REPL namespace.

The introspection commands are an essential part of debugging and interacting
with Haskell code:
�: :type 3
3 :: Num a => a

�: :kind Either
Either :: * -> * -> *

�: :info Functor
class Functor f where
fmap :: (a -> b) -> f a -> f b
(<$) :: a -> f b -> f a

-- Defined in `GHC.Base'
...

�: :i (:)
data [] a = ... | a : [a] -- Defined in `GHC.Types'
infixr 5 :

The current state of the global environment in the shell can also be queried.
Such as module-level bindings and types:

19

�: :browse
�: :show bindings

Or module level imports:
�: :show imports
import Prelude -- implicit
import Data.Eq
import Control.Monad

Or compiler-level flags and pragmas:
�: :set
options currently set: none.
base language is: Haskell2010
with the following modifiers:
-XNoDatatypeContexts
-XNondecreasingIndentation

GHCi-specific dynamic flag settings:
other dynamic, non-language, flag settings:
-fimplicit-import-qualified

warning settings:

�: :showi language
base language is: Haskell2010
with the following modifiers:
-XNoDatatypeContexts
-XNondecreasingIndentation
-XExtendedDefaultRules

Language extensions and compiler pragmas can be set at the prompt. See the
Flag Reference for the vast set of compiler flag options.
Several commands for interactive shell have shortcuts:

Function
+t Show types of evaluated expressions
+s Show timing and memory usage
+m Enable multi-line expression delimited by :{ and :}.

�: :set +t
�: []
[]
it :: [a]

�: :set +s
�: foldr (+) 0 [1..25]
325
it :: Prelude.Integer

20

(0.02 secs, 4900952 bytes)

�: :{
�:| let foo = do
�:| putStrLn "hello ghci"
�:| :}
�: foo
"hello ghci"

The configuration for the GHCi shell can be customized globally by defin-
ing a ghci.conf in $HOME/.ghc/ or in the current working directory as
./.ghci.conf.
For example we can add a command to use the Hoogle type search from within
GHCi.
cabal install hoogle

We can use it by adding a command to our ghci.conf.
:set prompt "�: "

:def hlint const . return $ ":! hlint \"src\""
:def hoogle \s -> return $ ":! hoogle --count=15 \"" ++ s ++ "\""

�: :hoogle (a -> b) -> f a -> f b
Data.Traversable fmapDefault :: Traversable t => (a -> b) -> t a -> t b
Prelude fmap :: Functor f => (a -> b) -> f a -> f b

For reasons of sexiness it is desirable to set your GHC prompt to a � or a ΠΣ if
you’re into that lifestyle.
:set prompt "�: "
:set prompt "ΠΣ: "

GHCi Performance
For large projects GHCi with the default flags can use quite a bit of memory
and take a long time to compile. To speed compilation by keeping artificats
for compiled modules around we can enable object code compilation instead of
bytecode.
:set -fobject-code

This has some drawbacks in that type information provided to the shell can
sometimes be less informative and break with some langauge extensions. In
that case you can temporally reenable bytecode on a per module basis with the
opposite flag.
:set -fbyte-code
:load MyModule.hs

21

If you all you need is just to typecheck your code in the interactive shell then
disabling code generation entirely makes reloads almost instantaneous.
:set -fbyte-code

Editor Integration

Haskell has a variety of editor tools that can be used to provide interactive de-
velopment feedback and functionality such as querying types of subexpressions,
linting, type checking, and code completion.
Many prepackaged setups exist to expedite the process of setting up many of
the programmer editors for Haskell development. In particular ghc-mod can
remarkably improve the efficiency and productivity.
Vim

• haskell-vim-now
• Vim and Haskell in 2016

Emacs
• Chris Done’s Emacs Config
• Haskell Development From Emacs
• Structured Haskell Mode

Bottoms

error :: String -> a
undefined :: a

The bottom is a singular value that inhabits every type. When evaluated the
semantics of Haskell no longer yields a meaningful value. It’s usually written as
the symbol � (i.e. the compiler flipping you off).
An example of an infinite looping term:
f :: a
f = let x = x in x

The undefined function is nevertheless extremely practical to accommodate
writing incomplete programs and for debugging.
f :: a -> Complicated Type
f = undefined -- write tomorrow, typecheck today!

Partial functions from non-exhaustive pattern matching is probably the most
common introduction of bottoms.
data F = A | B
case x of
A -> ()

22

https://github.com/begriffs/haskell-vim-now
http://www.stephendiehl.com/posts/vim_2016.html
https://github.com/chrisdone/emacs-haskell-config
http://tim.dysinger.net/posts/2014-02-18-haskell-with-emacs.html
https://github.com/chrisdone/structured-haskell-mode

The above is translated into the following GHC Core with the exception
inserted for the non-exhaustive patterns. GHC can be made more vocal
about incomplete patterns using the -fwarn-incomplete-patterns and
-fwarn-incomplete-uni-patterns flags.
case x of _ {
A -> ();
B -> patError "<interactive>:3:11-31|case"

}

The same holds with record construction with missing fields, although there’s
almost never a good reason to construct a record with missing fields and GHC
will warn us by default.
data Foo = Foo { example1 :: Int }
f = Foo {}

Again this has an error term put in place by the compiler:
Foo (recConError "<interactive>:4:9-12|a")

What’s not immediately apparent is that they are used extensively through-
out the Prelude, some for practical reasons others for historical reasons. The
canonical example is the head function which as written [a] -> a could not be
well-typed without the bottom.
import GHC.Err
import Prelude hiding (head, (!!), undefined)

-- degenerate functions

undefined :: a
undefined = error "Prelude.undefined"

head :: [a] -> a
head (x:_) = x
head [] = error "Prelude.head: empty list"

(!!) :: [a] -> Int -> a
xs !! n | n < 0 = error "Prelude.!!: negative index"
[] !! _ = error "Prelude.!!: index too large"
(x:_) !! 0 = x
(_:xs) !! n = xs !! (n-1)

It’s rare to see these partial functions thrown around carelessly in production
code and the preferred method is instead to use the safe variants provided in
Data.Maybe combined with the usual fold functions maybe and either or to use
pattern matching.
listToMaybe :: [a] -> Maybe a
listToMaybe [] = Nothing

23

listToMaybe (a:_) = Just a

When a bottom defined in terms of error is invoked it typically will not generate
any position information, but the function used to provide assertions assert
can be short circuited to generate position information in the place of either
undefined or error call.
import GHC.Base

foo :: a
foo = undefined
-- *** Exception: Prelude.undefined

bar :: a
bar = assert False undefined
-- *** Exception: src/fail.hs:8:7-12: Assertion failed

See: Avoiding Partial Functions

Exhaustiveness

Pattern matching in Haskell allows for the possibility of non-exhaustive patterns,
or cases which are not exhaustive and instead of yielding a value halt from an
incomplete match.
Partial functions from non-exhaustivity are controversial subject, and large use
of non-exhaustive patterns is considered a dangerous code smell. Although the
complete removal of non-exhaustive patterns from the language entirely would
itself be too restrictive and forbid too many valid programs.
For example, the following function given a Nothing will crash at runtime and
is otherwise a valid type-checked program.
unsafe (Just x) = x + 1

There are however flags we can pass to the compiler to warn us about such
things or forbid them entirely either locally or globally.
$ ghc -c -Wall -Werror A.hs
A.hs:3:1:

Warning: Pattern match(es) are non-exhaustive
In an equation for `unsafe': Patterns not matched: Nothing

The -Wall or incomplete pattern flag can also be added on a per-module basis
with the OPTIONS_GHC pragma.
{-# OPTIONS_GHC -Wall #-}
{-# OPTIONS_GHC -fwarn-incomplete-patterns #-}

A more subtle case is when implicitly pattern matching with a single “uni-
pattern” in a lambda expression. The following will fail when given a Nothing.

24

https://wiki.haskell.org/Avoiding_partial_functions

boom = \(Just a) -> something

This occurs frequently in let or do-blocks which after desugaring translate into
a lambda like the above example.
boom = let
Just a = something

boom = do
Just a <- something

GHC can warn about these cases with the -fwarn-incomplete-uni-patterns
flag.
Grossly speaking any non-trivial program will use some measure of partial func-
tions, it’s simply a fact. This just means there exists obligations for the pro-
grammer than cannot be manifest in the Haskell type system.

Debugger

Although its use is somewhat rare, GHCi actually does have a builtin debugger.
Debugging uncaught exceptions from bottoms or asynchronous exceptions is in
similar style to debugging segfaults with gdb.
�: :set -fbreak-on-exception
�: :trace main
�: :hist
�: :back

Stacktraces

With runtime profiling enabled GHC can also print a stack trace when an di-
verging bottom term (error, undefined) is hit, though this requires a special flag
and profiling to be enabled, both are disabled by default. So for example:
import Control.Exception

f x = g x

g x = error (show x)

main = try (evaluate (f ())) :: IO (Either SomeException ())

$ ghc -O0 -rtsopts=all -prof -auto-all --make stacktrace.hs
./stacktrace +RTS -xc

And indeed the runtime tells us that the exception occurred in the function g
and enumerates the call stack.

25

*** Exception (reporting due to +RTS -xc): (THUNK_2_0), stack trace:
Main.g,
called from Main.f,
called from Main.main,
called from Main.CAF
--> evaluated by: Main.main,
called from Main.CAF

It is best to run this without optimizations applied -O0 so as to preserve the
original call stack as represented in the source. With optimizations applied this
may often entirely different since GHC will rearrange the program in rather
drastic ways.
See:

• xc flag

Trace

Haskell being pure has the unique property that most code is introspectable on
its own, as such the “printf” style of debugging is often unnecessary when we
can simply open GHCi and test the function. Nevertheless Haskell does come
with an unsafe trace function which can be used to perform arbitrary print
statements outside of the IO monad.
import Debug.Trace

example1 :: Int
example1 = trace "impure print" 1

example2 :: Int
example2 = traceShow "tracing" 2

example3 :: [Int]
example3 = [trace "will not be called" 3]

main :: IO ()
main = do
print example1
print example2
print $ length example3

-- impure print
-- 1
-- "tracing"
-- 2
-- 1

26

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/runtime-control.html#idp13041968

Trace uses unsafePerformIO under the hood and shouldn’t be used in stable
code.
In addition to just the trace function, several common monadic patterns are
quite common.
import Text.Printf
import Debug.Trace

traceM :: (Monad m) => String -> m ()
traceM string = trace string $ return ()

traceShowM :: (Show a, Monad m) => a -> m ()
traceShowM = traceM . show

tracePrintfM :: (Monad m, PrintfArg a) => String -> a -> m ()
tracePrintfM s = traceM . printf s

Type Holes

Since GHC 7.8 we have a new tool for debugging incomplete programs by means
of typed holes. By placing an underscore on any value on the right hand-side
of a declaration GHC will throw an error during type-checker that reflects the
possible values that could placed at this point in the program to make the
program type-check.
instance Functor [] where
fmap f (x:xs) = f x : fmap f _

[1 of 1] Compiling Main (src/typedhole.hs, interpreted)

src/typedhole.hs:7:32:
Found hole ‘_’ with type: [a]
Where: ‘a’ is a rigid type variable bound by

the type signature for fmap :: (a -> b) -> [a] -> [b]
at src/typedhole.hs:7:3

Relevant bindings include
xs :: [a] (bound at src/typedhole.hs:7:13)
x :: a (bound at src/typedhole.hs:7:11)
f :: a -> b (bound at src/typedhole.hs:7:8)
fmap :: (a -> b) -> [a] -> [b] (bound at src/typedhole.hs:7:3)

In the second argument of ‘fmap’, namely ‘_’
In the second argument of ‘(:)’, namely ‘fmap f _’
In the expression: f x : fmap f _

Failed, modules loaded: none.

GHC has rightly suggested that the expression needed to finish the program is
xs :: [a].

27

Deferred Type Errors

As of 7.8 GHC support the option of pushing type errors to runtime errors
allowing us to run the program and let it simply fail only when a mistyped
expression is evaluated, letting the rest of the program proceed to run. This is
enabled with the -fdefer-type-errors which can be enabled at the module
level, when compiled or inside of a GHCi interactive session.
{-# OPTIONS_GHC -fdefer-type-errors #-}

x :: ()
x = print 3

y :: Char
y = 0

z :: Int
z = 0 + "foo"

main :: IO ()
main = do
print x

The resulting program will compile but at runtime we’ll see a message like the
following when a pathological term is evaluated.
defer: defer.hs:4:5:

Couldn't match expected type ‘()’ with actual type ‘IO ()’
In the expression: print 3
In an equation for ‘x’: x = print 3

(deferred type error)

ghcid

ghcid is a lightweight IDE hook that allows continuous feedback whenever code
is updated.
It is run from the command line in the root of the cabal project directory by
specifying a commnad to run, for example cabal repl or stack repl.
ghcid --command="cabal repl"
ghcid --command="stack repl"

Any subsequent change to your project’s filesystem will trigger and automatic
reload.

28

Haddock

Haddock is the automatic documentation tool for Haskell source code. It inte-
grates with the usual cabal toolchain.
-- | Documentation for f
f :: a -> a
f = ...

-- | Multiline documentation for the function
-- f with multiple arguments.
fmap :: Functor f =>

=> (a -> b) -- ^ function
-> f a -- ^ input
-> f b -- ^ output

data T a b
= A a -- ^ Documentation for A
| B b -- ^ Documentation for B

Elements within a module (value, types, classes) can be hyperlinked by enclosing
the identifier in single quotes.
data T a b
= A a -- ^ Documentation for 'A'
| B b -- ^ Documentation for 'B'

Modules themselves can be referenced by enclosing them in double quotes.
-- | Here we use the "Data.Text" library and import
-- the 'Data.Text.pack' function.

-- | An example of a code block.
--
-- @
-- f x = f (f x)
-- @

-- > f x = f (f x)

-- | Example of an interactive shell session.
--
-- >>> factorial 5
-- 120

Headers for specific blocks can be added by prefacing the comment in the module
block with a star:
module Foo (
-- * My Header
example1,

29

example2
)

Sections can also be delineated by $ blocks that pertain to references in the
body of the module:
module Foo (
-- $section1
example1,
example2

)

-- $section1
-- Here is the documentation section that describes the symbols
-- 'example1' and 'example2'.

Links can be added with the syntax:
<url text>

Images can can also be included, so long as the path is relative to the haddock
or an absolute reference.
<<diagram.png title>>

Haddock options can also be specified with pragmas in the source, either on
module or project level.
{-# OPTIONS_HADDOCK show-extensions, ignore-exports #-}

Option Description
ignore-exports Ignores the export list and includes all signatures in scope.
not-home Module will not be considered in the root documentation.
show-extensions Annotates the documentation with the language extensions used.
hide Forces the module to be hidden from Haddock.
prune Omits definitions with no annotations.

Monads

Eightfold Path to Monad Satori

Much ink has been spilled waxing lyrical about the supposed mystique of mon-
ads. Instead I suggest a path to enlightenment:

1. Don’t read the monad tutorials.
2. No really, don’t read the monad tutorials.
3. Learn about Haskell types.
4. Learn what a typeclass is.

30

5. Read the Typeclassopedia.
6. Read the monad definitions.
7. Use monads in real code.
8. Don’t write monad-analogy tutorials.

In other words, the only path to understanding monads is to read the fine source,
fire up GHC and write some code. Analogies and metaphors will not lead to
understanding.

Monadic Myths

The following are all false:
• Monads are impure.
• Monads are about effects.
• Monads are about state.
• Monads are about imperative sequencing.
• Monads are about IO.
• Monads are dependent on laziness.
• Monads are a “back-door” in the language to perform side-effects.
• Monads are an embedded imperative language inside Haskell.
• Monads require knowing abstract mathematics.

See: What a Monad Is Not

Laws

Monads are not complicated, the implementation is a typeclass with two func-
tions, (>>=) pronounced “bind” and return. Any preconceptions one might
have for the word “return” should be discarded, it has an entirely different
meaning.
class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

Together with three laws that all monad instances must satisfy.
Law 1
return a >>= f � f a

Law 2
m >>= return � m

Law 3
(m >>= f) >>= g � m >>= (\x -> f x >>= g)

31

http://wiki.haskell.org/Typeclassopedia
http://wiki.haskell.org/What_a_Monad_is_not

There is an auxiliary function ((>>)) defined in terms of the bind operation that
discards its argument.
(>>) :: Monad m => m a -> m b -> m b
m >> k = m >>= _ -> k

See: Monad Laws

Do Notation

Monads syntax in Haskell is written in sugared form that is entirely equivalent to
just applications of the monad operations. The desugaring is defined recursively
by the rules:
do { a <- f ; m } � f >>= \a -> do { m }
do { f ; m } � f >> do { m }
do { m } � m

So for example the following are equivalent:
do
a <- f
b <- g
c <- h
return (a, b, c)

do {
a <- f;
b <- g;
c <- h;
return (a, b, c)
}

f >>= \a ->
g >>= \b ->
h >>= \c ->
return (a, b, c)

If one were to write the bind operator as an uncurried function (this is not how
Haskell uses it) the same desugaring might look something like the following
chain of nested binds with lambdas.
bindMonad(f, lambda a:
bindMonad(g, lambda b:
bindMonad(h, lambda c:
returnMonad (a,b,c))))

In the do-notation the monad laws from above are equivalently written:
Law 1

32

http://wiki.haskell.org/Monad_laws

do y <- return x
f y

= do f x

Law 2
do x <- m

return x

= do m

Law 3
do b <- do a <- m

f a
g b

= do a <- m
b <- f a
g b

= do a <- m
do b <- f a

g b

See: Haskell 2010: Do Expressions

Maybe

The Maybe monad is the simplest first example of a monad instance. The
Maybe monad models computations which fail to yield a value at any point
during computation.
data Maybe a = Just a | Nothing

instance Monad Maybe where
(Just x) >>= k = k x
Nothing >>= k = Nothing

return = Just

(Just 3) >>= (\x -> return (x + 1))
-- Just 4

Nothing >>= (\x -> return (x + 1))
-- Nothing

return 4 :: Maybe Int
-- Just 4

33

http://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-470003.14

example1 :: Maybe Int
example1 = do
a <- Just 3
b <- Just 4
return $ a + b

-- Just 7

example2 :: Maybe Int
example2 = do
a <- Just 3
b <- Nothing
return $ a + b

-- Nothing

List

The List monad is the second simplest example of a monad instance.
instance Monad [] where
m >>= f = concat (map f m)
return x = [x]

So for example with:
m = [1,2,3,4]
f = \x -> [1,0]

The evaluation proceeds as follows:
m >>= f
==> [1,2,3,4] >>= \x -> [1,0]
==> concat (map (\x -> [1,0]) [1,2,3,4])
==> concat ([[1,0],[1,0],[1,0],[1,0]])
==> [1,0,1,0,1,0,1,0]

The list comprehension syntax in Haskell can be implemented in terms of the
list monad.
a = [f x y | x <- xs, y <- ys, x == y]

-- Identical to `a`
b = do
x <- xs
y <- ys
guard $ x == y
return $ f x y

example :: [(Int, Int, Int)]
example = do

34

a <- [1,2]
b <- [10,20]
c <- [100,200]
return (a,b,c)

-- [(1,10,100),(1,10,200),(1,20,100),(1,20,200),(2,10,100),(2,10,200),(2,20,100),(2,20,200)]

IO

A value of type IO a is a computation which, when performed, does some I/O
before returning a value of type a. Desugaring the IO monad:
main :: IO ()
main = do putStrLn "What is your name: "

name <- getLine
putStrLn name

main :: IO ()
main = putStrLn "What is your name:" >>=

_ -> getLine >>=
\name -> putStrLn name

main :: IO ()
main = putStrLn "What is your name: " >> (getLine >>= (\name -> putStrLn name))

See: Haskell 2010: Basic/Input Output

Whats the point?

Consider the non-intuitive fact that we now have a uniform interface for talking
about three very different but foundational ideas for programming: Failure,
Collections, and Effects.
Let’s write down a new function called sequence which folds a function mcons,
which we can think of as analogues to the list constructor (i.e. (a : b : []))
except it pulls the two list elements out of two monadic values (p,q) using bind.
sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])

mcons :: Monad m => m t -> m [t] -> m [t]
mcons p q = do
x <- p
y <- q
return (x:y)

What does this function mean in terms of each of the monads discussed above?
Maybe

35

http://www.haskell.org/onlinereport/haskell2010/haskellch7.html

Sequencing a list of a Maybe values allows us to collect the results of a series
of computations which can possibly fail and yield the aggregated values only if
they all succeeded.
sequence :: [Maybe a] -> Maybe [a]

sequence [Just 3, Just 4]
-- Just [3,4]
sequence [Just 3, Just 4, Nothing]
-- Nothing

List
Since the bind operation for the list monad forms the pairwise list of elements
from the two operands, folding the bind over a list of lists with sequence im-
plements the general Cartesian product for an arbitrary number of lists.
sequence :: [[a]] -> [[a]]

sequence [[1,2,3],[10,20,30]]
-- [[1,10],[1,20],[1,30],[2,10],[2,20],[2,30],[3,10],[3,20],[3,30]]

IO
Sequence takes a list of IO actions, performs them sequentially, and returns the
list of resulting values in the order sequenced.
sequence :: [IO a] -> IO [a]

sequence [getLine, getLine]
-- a
-- b
-- ["a","b"]

So there we have it, three fundamental concepts of computation that are nor-
mally defined independently of each other actually all share this similar structure
that can be abstracted out and reused to build higher abstractions that work
for all current and future implementations. If you want a motivating reason
for understanding monads, this is it! This is the essence of what I wish I knew
about monads looking back.
See: Control.Monad

Reader Monad

The reader monad lets us access shared immutable state within a monadic con-
text.
ask :: Reader r r
asks :: (r -> a) -> Reader r a
local :: (r -> r) -> Reader r a -> Reader r a
runReader :: Reader r a -> r -> a

36

http://hackage.haskell.org/package/base-4.6.0.1/docs/Control-Monad.html#g:4

import Control.Monad.Reader

data MyContext = MyContext
{ foo :: String
, bar :: Int
} deriving (Show)

computation :: Reader MyContext (Maybe String)
computation = do
n <- asks bar
x <- asks foo
if n > 0
then return (Just x)
else return Nothing

ex1 :: Maybe String
ex1 = runReader computation $ MyContext "hello" 1

ex2 :: Maybe String
ex2 = runReader computation $ MyContext "haskell" 0

A simple implementation of the Reader monad:
newtype Reader r a = Reader { runReader :: r -> a }

instance Monad (Reader r) where
return a = Reader $ _ -> a
m >>= k = Reader $ \r -> runReader (k (runReader m r)) r

ask :: Reader a a
ask = Reader id

asks :: (r -> a) -> Reader r a
asks f = Reader f

local :: (r -> r) -> Reader r a -> Reader r a
local f m = Reader $ runReader m . f

Writer Monad

The writer monad lets us emit a lazy stream of values from within a monadic
context.
tell :: w -> Writer w ()
execWriter :: Writer w a -> w
runWriter :: Writer w a -> (a, w)

37

import Control.Monad.Writer

type MyWriter = Writer [Int] String

example :: MyWriter
example = do
tell [1..5]
tell [5..10]
return "foo"

output :: (String, [Int])
output = runWriter example

A simple implementation of the Writer monad:
import Data.Monoid

newtype Writer w a = Writer { runWriter :: (a, w) }

instance Monoid w => Monad (Writer w) where
return a = Writer (a, mempty)
m >>= k = Writer $ let

(a, w) = runWriter m
(b, w') = runWriter (k a)
in (b, w `mappend` w')

execWriter :: Writer w a -> w
execWriter m = snd (runWriter m)

tell :: w -> Writer w ()
tell w = Writer ((), w)

This implementation is lazy so some care must be taken that one actually wants
to only generate a stream of thunks. Most often the lazy writer is not suitable for
use, instead implement the equivalent structure by embedding some monomial
object inside a StateT monad, or using the strict version.
import Control.Monad.Writer.Strict

State Monad

The state monad allows functions within a stateful monadic context to access
and modify shared state.
runState :: State s a -> s -> (a, s)
evalState :: State s a -> s -> a
execState :: State s a -> s -> s

38

import Control.Monad.State

test :: State Int Int
test = do
put 3
modify (+1)
get

main :: IO ()
main = print $ execState test 0

The state monad is often mistakenly described as being impure, but it is in fact
entirely pure and the same effect could be achieved by explicitly passing state.
A simple implementation of the State monad is only a few lines:
newtype State s a = State { runState :: s -> (a,s) }

instance Monad (State s) where
return a = State $ \s -> (a, s)

State act >>= k = State $ \s ->
let (a, s') = act s
in runState (k a) s'

get :: State s s
get = State $ \s -> (s, s)

put :: s -> State s ()
put s = State $ _ -> ((), s)

modify :: (s -> s) -> State s ()
modify f = get >>= \x -> put (f x)

evalState :: State s a -> s -> a
evalState act = fst . runState act

execState :: State s a -> s -> s
execState act = snd . runState act

Monad Tutorials

So many monad tutorials have been written that it begs the question: what
makes monads so difficult when first learning Haskell? I hypothesize there are
three aspects to why this is so:

1. There are several levels on indirection with desugaring.

39

A lot of Haskell that we write is radically rearranged and transformed into an
entirely new form under the hood.
Most monad tutorials will not manually expand out the do-sugar. This leaves
the beginner thinking that monads are a way of dropping into a pseudo-
imperative language inside of code and further fuels that misconception that
specific instances like IO are monads in their full generality.
main = do
x <- getLine
putStrLn x
return ()

Being able to manually desugar is crucial to understanding.
main =
getLine >>= \x ->
putStrLn x >>= _ ->
return ()

2. Asymmetric binary infix operators for higher order functions are not com-
mon in other languages.

(>>=) :: Monad m => m a -> (a -> m b) -> m b

On the left hand side of the operator we have an m a and on the right we have a
-> m b. Although some languages do have infix operators that are themselves
higher order functions, it is still a rather rare occurrence.
So with a function desugared, it can be confusing that (>>=) operator is in fact
building up a much larger function by composing functions together.
main =
getLine >>= \x ->
putStrLn >>= _ ->
return ()

Written in prefix form, it becomes a little bit more digestible.
main =
(>>=) getLine (\x ->
(>>=) putStrLn (_ ->

return ()
)

)

Perhaps even removing the operator entirely might be more intuitive coming
from other languages.
main = bind getLine (\x -> bind putStrLn (_ -> return ()))
where
bind x y = x >>= y

3. Ad-hoc polymorphism is not commonplace in other languages.

40

Haskell’s implementation of overloading can be unintuitive if one is not familiar
with type inference. It is abstracted away from the user but the (>>=) or bind
function is really a function of 3 arguments with the extra typeclass dictionary
argument ($dMonad) implicitly threaded around.
main $dMonad = bind $dMonad getLine (\x -> bind $dMonad putStrLn (_ -> return $dMonad ()))

Except in the case where the parameter of the monad class is unified (through
inference) with a concrete class instance, in which case the instance dictionary
($dMonadIO) is instead spliced throughout.
main :: IO ()
main = bind $dMonadIO getLine (\x -> bind $dMonadIO putStrLn (_ -> return $dMonadIO ()))

Now, all of these transformations are trivial once we understand them, they’re
just typically not discussed. In my opinion the fundamental fallacy of monad
tutorials is not that intuition for monads is hard to convey (nor are metaphors
required!), but that novices often come to monads with an incomplete under-
standing of points (1), (2), and (3) and then trip on the simple fact that monads
are the first example of a Haskell construct that is the confluence of all three.
See: Monad Tutorial Fallacy

Monad Transformers

mtl / transformers

So the descriptions of Monads in the previous chapter are a bit of a white
lie. Modern Haskell monad libraries typically use a more general form of these
written in terms of monad transformers which allow us to compose monads
together to form composite monads. The monads mentioned previously are
subsumed by the special case of the transformer form composed with the Identity
monad.

Monad Transformer Type Transformed Type
Maybe MaybeT Maybe a m (Maybe a)
Reader ReaderT r -> a r -> m a
Writer WriterT (a,w) m (a,w)
State StateT s -> (a,s) s -> m (a,s)

type State s = StateT s Identity
type Writer w = WriterT w Identity
type Reader r = ReaderT r Identity

instance Monad m => MonadState s (StateT s m)
instance Monad m => MonadReader r (ReaderT r m)

41

http://byorgey.wordpress.com/2009/01/12/abstraction-intuition-and-the-monad-tutorial-fallacy/

instance (Monoid w, Monad m) => MonadWriter w (WriterT w m)

In terms of generality the mtl library is the most common general interface for
these monads, which itself depends on the transformers library which generalizes
the “basic” monads described above into transformers.

Transformers

At their core monad transformers allow us to nest monadic computations in a
stack with an interface to exchange values between the levels, called lift.
lift :: (Monad m, MonadTrans t) => m a -> t m a
liftIO :: MonadIO m => IO a -> m a

class MonadTrans t where
lift :: Monad m => m a -> t m a

class (Monad m) => MonadIO m where
liftIO :: IO a -> m a

instance MonadIO IO where
liftIO = id

Just as the base monad class has laws, monad transformers also have several
laws:
Law #1
lift . return = return

Law #2
lift (m >>= f) = lift m >>= (lift . f)

Or equivalently:
Law #1
lift (return x)

= return x

Law #2
do x <- lift m

lift (f x)

= lift $ do x <- m
f x

It’s useful to remember that transformers compose outside-in but are unrolled
inside out.
See: Monad Transformers: Step-By-Step

42

http://catamorph.de/publications/2004-10-01-monad-transformers.html

Basics

The most basic use requires us to use the T-variants of each of the monad
transformers for the outer layers and to explicit lift and return values between
each the layers. Monads have kind (* -> *) so monad transformers which take
monads to monads have ((* -> *) -> * -> *):
Monad (m :: * -> *)
MonadTrans (t :: (* -> *) -> * -> *)

So for example if we wanted to form a composite computation using both the
Reader and Maybe monads we can now put the Maybe inside of a ReaderT to
form ReaderT t Maybe a.
import Control.Monad.Reader

type Env = [(String, Int)]
type Eval a = ReaderT Env Maybe a

data Expr
= Val Int
| Add Expr Expr
| Var String
deriving (Show)

eval :: Expr -> Eval Int
eval ex = case ex of

Val n -> return n

Add x y -> do
a <- eval x
b <- eval y
return (a+b)

Var x -> do
env <- ask
val <- lift (lookup x env)
return val

env :: Env
env = [("x", 2), ("y", 5)]

ex1 :: Eval Int
ex1 = eval (Add (Val 2) (Add (Val 1) (Var "x")))

example1, example2 :: Maybe Int

43

example1 = runReaderT ex1 env
example2 = runReaderT ex1 []

The fundamental limitation of this approach is that we find ourselves
lift.lift.lifting and return.return.returning a lot.

ReaderT

For example, there exist three possible forms of th Reader monad. The first
is the Haskell 98 version that no longer exists but is useful for understanding
the underlying ideas. The other two are the transformers variant and the mtl
variants.
Reader
newtype Reader r a = Reader { runReader :: r -> a }

instance MonadReader r (Reader r) where
ask = Reader id
local f m = Reader (runReader m . f)

ReaderT
newtype ReaderT r m a = ReaderT { runReaderT :: r -> m a }

instance (Monad m) => Monad (ReaderT r m) where
return a = ReaderT $ _ -> return a
m >>= k = ReaderT $ \r -> do

a <- runReaderT m r
runReaderT (k a) r

instance MonadTrans (ReaderT r) where
lift m = ReaderT $ _ -> m

MonadReader
class (Monad m) => MonadReader r m | m -> r where
ask :: m r
local :: (r -> r) -> m a -> m a

instance (Monad m) => MonadReader r (ReaderT r m) where
ask = ReaderT return
local f m = ReaderT $ \r -> runReaderT m (f r)

So hypothetically the three variants of ask would be:
ask :: Reader r a
ask :: Monad m => ReaderT r m r
ask :: MonadReader r m => m r

In practice only the last one is used in modern Haskell.

44

Newtype Deriving

Newtypes let us reference a data type with a single constructor as a new distinct
type, with no runtime overhead from boxing, unlike an algebraic datatype with
single constructor. Newtype wrappers around strings and numeric types can
often drastically reduce accidental errors.
Consider the case of using a newtype to distinguish between two different text
blobs with different semantics. Both have the same runtime representation
as text object but are distinguished Statically so that plaintext can not be
accidentally interchanged with encrypted text.
newtype Plaintext = Plaintext Text
newtype Crytpotext = Cryptotext Text

encrypt :: Key -> Plaintext -> Cryptotext
decrypt :: Key -> Cryptotext -> Plaintext

The other common use case is using newtypes to derive logic for deriving custom
monad transformers in our business logic. Using -XGeneralizedNewtypeDeriving
we can recover the functionality of instances of the underlying types composed
in our transformer stack.
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

newtype Velocity = Velocity { unVelocity :: Double }
deriving (Eq, Ord)

v :: Velocity
v = Velocity 2.718

x :: Double
x = 6.636

-- Type error is caught at compile time even though they are the same value at runtime!
err = v + x

newtype Quantity v a = Quantity a
deriving (Eq, Ord, Num, Show)

data Haskeller
type Haskellers = Quantity Haskeller Int

a = Quantity 2 :: Haskellers
b = Quantity 6 :: Haskellers

totalHaskellers :: Haskellers
totalHaskellers = a + b

45

Couldn't match type `Double' with `Velocity'
Expected type: Velocity
Actual type: Double

In the second argument of `(+)', namely `x'
In the expression: v + x

Using newtype deriving with the mtl library typeclasses we can produce flat-
tened transformer types that don’t require explicit lifting in the transform stack.
For example, here is a little stack machine involving the Reader, Writer and
State monads.
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

import Control.Monad.Reader
import Control.Monad.Writer
import Control.Monad.State

type Stack = [Int]
type Output = [Int]
type Program = [Instr]

type VM a = ReaderT Program (WriterT Output (State Stack)) a

newtype Comp a = Comp { unComp :: VM a }
deriving (Monad, MonadReader Program, MonadWriter Output, MonadState Stack)

data Instr = Push Int | Pop | Puts

evalInstr :: Instr -> Comp ()
evalInstr instr = case instr of
Pop -> modify tail
Push n -> modify (n:)
Puts -> do
tos <- gets head
tell [tos]

eval :: Comp ()
eval = do
instr <- ask
case instr of
[] -> return ()
(i:is) -> evalInstr i >> local (const is) eval

execVM :: Program -> Output
execVM = flip evalState [] . execWriterT . runReaderT (unComp eval)

program :: Program

46

program = [
Push 42,
Push 27,
Puts,
Pop,
Puts,
Pop

]

main :: IO ()
main = mapM_ print $ execVM program

Pattern matching on a newtype constructor compiles into nothing. For example
theextractB function does not scrutinize the MkB constructor like the extractA
does, because MkB does not exist at runtime, it is purely a compile-time con-
struct.
data A = MkA Int
newtype B = MkB Int

extractA :: A -> Int
extractA (MkA x) = x

extractB :: B -> Int
extractB (MkB x) = x

Efficiency

The second monad transformer law guarantees that sequencing consecutive lift
operations is semantically equivalent to lifting the results into the outer monad.
do x <- lift m == lift $ do x <- m

lift (f x) f x

Although they are guaranteed to yield the same result, the operation of lifting
the results between the monad levels is not without cost and crops up frequently
when working with the monad traversal and looping functions. For example, all
three of the functions on the left below are less efficient than the right hand side
which performs the bind in the base monad instead of lifting on each iteration.
-- Less Efficient More Efficient
forever (lift m) == lift (forever m)
mapM_ (lift . f) xs == lift (mapM_ f xs)
forM_ xs (lift . f) == lift (forM_ xs f)

47

Monad Morphisms

The base monad transformer package provides a MonadTrans class for lifting
between layer:
lift :: Monad m => m a -> t m a

But often times we need to work with and manipulate our monad transformer
stack to either produce new transformers, modify existing ones, or extend an
upstream library with new layers. The mmorph library provides the capacity to
compose monad morphism transformation directly on transformer stacks. The
equivalent of type transformer type-level map is the hoist function.
hoist :: Monad m => (forall a. m a -> n a) -> t m b -> t n b

Hoist takes a monad morphism (a mapping a m a to a n a) and applies in on
the inner value monad of a transformer stack, transforming the value under the
outer layer.
For example the monad morphism generalize takes an Identity into another
monad m of the same index. For example this generalizes State s Identity
into StateT s m a.
generalize :: Monad m => Identity a -> m a

So we could generalize an existing transformer to lift a IO layer into it.
import Control.Monad.State
import Control.Monad.Morph

type Eval a = State [Int] a

runEval :: [Int] -> Eval a -> a
runEval = flip evalState

pop :: Eval Int
pop = do
top <- gets head
modify tail
return top

push :: Int -> Eval ()
push x = modify (x:)

ev1 :: Eval Int
ev1 = do
push 3
push 4
pop
pop

48

ev2 :: StateT [Int] IO ()
ev2 = do
result <- hoist generalize ev1
liftIO $ putStrLn $ "Result: " ++ show result

See: mmorph

Language Extensions

It’s important to distinguish between different categories of language extensions
general and specialized.
The inherent problem with classifying the extensions into the general and spe-
cialized categories is that it’s a subjective classification. Haskellers who do type
system research will have a very different interpretation of Haskell than people
who do web programming. As such this is a conservative assessment, as an
arbitrary baseline let’s consider FlexibleInstances and OverloadedStrings
“everyday” while GADTs and TypeFamilies are “specialized”.
Key

• Benign implies that importing the extension won’t change the semantics
of the module if not used.

• Historical implies that one shouldn’t use this extension, it’s in GHC purely
for backwards compatibility. Sometimes these are dangerous to enable.

See: GHC Extension Reference

The Benign

It’s not obvious which extensions are the most common but it’s fairly safe to
say that these extensions are benign and are safely used extensively:

• OverloadedStrings
• FlexibleContexts
• FlexibleInstances
• GeneralizedNewtypeDeriving
• TypeSynonymInstances
• MultiParamTypeClasses
• FunctionalDependencies
• NoMonomorphismRestriction
• GADTs
• BangPatterns
• DeriveGeneric
• ScopedTypeVariables

49

https://hackage.haskell.org/package/mmorph
http://www.haskell.org/ghc/docs/7.8.2/html/users_guide/flag-reference.html#idp14615552

The Dangerous

GHC’s typechecker sometimes just casually tells us to enable language exten-
sions when it can’t solve certain problems. These include:

• DatatypeContexts
• OverlappingInstances
• IncoherentInstances
• ImpredicativeTypes
• AllowAmbigiousTypes

These almost always indicate a design flaw and shouldn’t be turned on to remedy
the error at hand, as much as GHC might suggest otherwise!

Type Inference

Inference in Haskell is usually precise, although there are several boundary cases
where inference is difficult or impossible to infer a principal type of an expression.
There a two common cases:

Mutually Recursive Binding Groups
f x = const x g
g y = f 'A'

The inferred type signatures are correct in their usage, but don’t represent the
most general signatures. When GHC analyzes the module it analyzes the de-
pendencies of expressions on each other, groups them together, and applies sub-
stitutions from unification across mutually defined groups. As such the inferred
types may not be the most general types possible, and an explicit signature may
be desired.
-- Inferred types
f :: Char -> Char
g :: t -> Char

-- Most general types
f :: a -> a
g :: a -> Char

Polymorphic recursion
data Tree a = Leaf | Bin a (Tree (a, a))

size Leaf = 0
size (Bin _ t) = 1 + 2 * size t

50

The problem with this expression is because the inferred type variable a in size
spans two possible types (a and (a,a)), the recursion is polymorphic. These two
types won’t pass the occurs-check of the typechecker and it yields an incorrect
inferred type.

Occurs check: cannot construct the infinite type: t0 = (t0, t0)
Expected type: Tree t0
Actual type: Tree (t0, t0)

In the first argument of `size', namely `t'
In the second argument of `(*)', namely `size t'
In the second argument of `(+)', namely `2 * size t'

Simply adding an explicit type signature corrects this. Type inference using
polymorphic recursion is undecidable in the general case.
size :: Tree a -> Int
size Leaf = 0
size (Bin _ t) = 1 + 2 * size t

See: Static Semantics of Function and Pattern Bindings

Monomorphism Restriction

The most common edge case of the inference is known as the dreaded monomor-
phism restriction.
When the toplevel declarations of a module are generalized the monomorphism
restricts that toplevel values (i.e. expressions not under a lambda) whose type
contains the subclass of the Num type from the Prelude are not generalized
and instead are instantiated with a monotype tried sequentially from the list
specified by the default which is normally Integer, then Double.
-- Double is inferred by type inferencer.
example1 :: Double
example1 = 3.14

-- In the presense of a lambda, a different type is inferred!
example2 :: Fractional a => t -> a
example2 _ = 3.14

default (Integer, Double)

As of GHC 7.8, the monomorphism restriction is switched off by default in
GHCi.
�: set +t

�: 3
3

51

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-880004.5

it :: Num a => a

�: default (Double)

�: 3
3.0
it :: Num a => a

Extended Defaulting

Haskell normally applies several defaulting rules for ambigious literals in the
absence of an explicit type signature. When an ambiguous literal is typechecked
if at least one of its typeclass constraints is numeric and all of its classes are
standard library classes, the module’s default list is consulted, and the first type
from the list that will satisfy the context of the type variable is instantiated. So
for instance given the following default rules.
default (C1 a,...,Cn a)

The following set of heuristics is used to determine what to instnatiate the
ambiguous type variable to.

1. The type variable a appears in no other constraints
2. All the classes Ci are standard.
3. At least one of the classes Ci is numeric.

The default default is (Integer, Double)
This is normally fine, but sometimes we’d like more granular control over de-
faulting. The -XExtendedDefaultRules loosens the restriction that we’re con-
strained with working on Numerical typeclasses and the constraint that we can
only work with standard library classes. If we’d like to have our string literals
(using -XOverlodaedStrings) automatically default to the more efficient Text
implementation instead of String we can twiddle the flag and GHC will per-
form the right substitution without the need for an explicit annotation on every
string literal.
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ExtendedDefaultRules #-}

import qualified Data.Text as T

default (T.Text)

example = "foo"

For code typed at the GHCi prompt, the -XExtendedDefaultRules flag is al-
ways on, and cannot be switched off.
See: Monomorphism Restriction

52

Safe Haskell

As everyone eventually finds out there are several functions within the imple-
mentation of GHC (not the Haskell language) that can be used to subvert
the type-system, they are marked with the prefix unsafe. These functions exist
only for when one can manually prove the soundness of an expression but can’t
express this property in the type-system or externalities to Haskell.
unsafeCoerce :: a -> b
unsafePerformIO :: IO a -> a

Using these functions to subvert the Haskell typesystem will cause all measure
of undefined behavior with unimaginable pain and suffering, and are strongly
discouraged. When initially starting out with Haskell there are no legitimate
reason to use these functions at all, period.
The Safe Haskell language extensions allow us to restrict the use of unsafe
language features using -XSafe which restricts the import of modules which are
themselves marked as Safe. It also forbids the use of certain language extensions
(-XTemplateHaskell) which can be used to produce unsafe code. The primary
use case of these extensions is security auditing.
{-# LANGUAGE Safe #-}
{-# LANGUAGE Trustworthy #-}

{-# LANGUAGE Safe #-}

import Unsafe.Coerce
import System.IO.Unsafe

bad1 :: String
bad1 = unsafePerformIO getLine

bad2 :: a
bad2 = unsafeCoerce 3.14 ()

Unsafe.Coerce: Can't be safely imported!
The module itself isn't safe.

See: Safe Haskell

Partial Type Signatures

The same hole technique can be applied at the toplevel for signatures:
const' :: _
const' x y = x

[1 of 1] Compiling Main (src/typedhole.hs, interpreted)

53

https://ghc.haskell.org/trac/ghc/wiki/SafeHaskell

typedhole.hs:3:11:
Found hole ‘_’ with type: t1 -> t -> t1
Where: ‘t’ is a rigid type variable bound by

the inferred type of const' :: t1 -> t -> t1 at foo.hs:4:1
‘t1’ is a rigid type variable bound by

the inferred type of const' :: t1 -> t -> t1 at foo.hs:4:1
To use the inferred type, enable PartialTypeSignatures
In the type signature for ‘const'’: _

Failed, modules loaded: none.

Pattern wildcards can also be given explicit names so that GHC will use when
reporting the inferred type in the resulting message.
foo :: _a -> _a
foo _ = False

typedhole.hs:6:9:
Couldn't match expected type ‘_a’ with actual type ‘Bool’
‘_a’ is a rigid type variable bound by

the type signature for foo :: _a -> _a at foo.hs:5:8
Relevant bindings include foo :: _a -> _a (bound at foo.hs:6:1)
In the expression: False
In an equation for ‘foo’: foo _ = False

Failed, modules loaded: none.

The same wildcards can be used in type contexts to dump out inferred type
class constraints:
succ' :: _ => a -> a
succ' x = x + 1

typedhole.hs:3:10:
Found hole ‘_’ with inferred constraints: (Num a)
To use the inferred type, enable PartialTypeSignatures
In the type signature for ‘succ'’: _ => a -> a

Failed, modules loaded: none.

When the flag -XPartialTypeSignature is passed to GHC and the inferred type
is unambiguous, GHC will let us leave the holes in place and the compilation
will proceed.
typedhole.hs:3:10: Warning:

Found hole ‘_’ with type: w_
Where: ‘w_’ is a rigid type variable bound by

the inferred type of succ' :: w_ -> w_1 -> w_ at foo.hs:4:1
In the type signature for ‘succ'’: _ -> _ -> _

54

Recursive Do

Recursive do notation allows to use to self-reference expressions on both sides
of a monadic bind. For instance the following uses lazy evaluation to generate
a infinite list. This is sometimes used for instantiating cyclic datatypes inside
of a monadic context that need to hold a reference to themselves.
{-# LANGUAGE DoRec #-}

justOnes :: [Int]
justOnes = do
rec xs <- Just (1:xs)
return (map negate xs)

See: Recursive Do Notation

Applicative Do

By default GHC desugars do-notation to use implicit invocations of bind and
return.
test :: Monad m => m (a, b, c)
test = do
a <- f
b <- g
c <- h
return (a, b, c)

Desugars into:
test :: Monad m => m (a, b, c)
test =
f >>= \a ->
g >>= \b ->
h >>= \c ->
return (a, b, c)

With ApplicativeDo this instead desugars into use of applicative combinators
and a laxer Applicative constraint.
test :: Applicative m => m (a, b, c)
test = (,,) <$> f <*> g <*> h

Pattern Guards

Pattern guards are an extension to the pattern matching syntax. Given a <-
pattern qualifier, the right hand side is evaluated and matched against the
pattern on the left. If the match fails then the whole guard fails and the next

55

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/syntax-extns.html#recursive-do-notation

equation is tried. If it succeeds, then the appropriate binding takes place, and
the next qualifier is matched, in the augmented environment.
{-# LANGUAGE PatternGuards #-}

combine env x y
| Just a <- lookup x env
, Just b <- lookup y env
= Just $ a + b

| otherwise = Nothing

ViewPatterns

View patterns are like pattern guards that can be nested inside of other patterns.
They are a convenient way of pattern-matching against values of algebraic data
types.
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE NoMonomorphismRestriction #-}

import Safe

lookupDefault :: Eq a => a -> b -> [(a,b)] -> b
lookupDefault k _ (lookup k -> Just s) = s
lookupDefault _ d _ = d

headTup :: (a, [t]) -> [t]
headTup (headMay . snd -> Just n) = [n]
headTup _ = []

headNil :: [a] -> [a]
headNil (headMay -> Just x) = [x]
headNil _ = []

TupleSections

{-# LANGUAGE TupleSections #-}

first :: a -> (a, Bool)
first = (,True)

second :: a -> (Bool, a)
second = (True,)

56

f :: t -> t1 -> t2 -> t3 -> (t, (), t1, (), (), t2, t3)
f = (,(),,(),(),,)

MultiWayIf

{-# LANGUAGE MultiWayIf #-}

bmiTell :: Float -> String
bmiTell bmi = if
| bmi <= 18.5 -> "You're underweight."
| bmi <= 25.0 -> "You're average weight."
| bmi <= 30.0 -> "You're overewight."
| otherwise -> "You're a whale."

EmptyCase

GHC normally requires at least one pattern branch in case statement this restric-
tion can be relaxed with -XEmptyCase. The case statement then immediately
yields a Non-exhaustive patterns in case if evaluated.
test = case of

LambdaCase

For case statements, LambdaCase allows the elimination of redundant free vari-
ables introduced purely for the case of pattern matching on.
\case
p1 -> 32
p2 -> 32

\temp -> case temp of
p1 -> 32
p2 -> 32

{-# LANGUAGE LambdaCase #-}

data Exp a
= Lam a (Exp a)
| Var a
| App (Exp a) (Exp a)

example :: Exp a -> a
example = \case
Lam a b -> a

57

Var a -> a
App a b -> example a

NumDecimals

NumDecimals allows the use of exponential notation for integral literals that are
not necessarily floats. Without it enable any use of expontial notation induces
a Fractional class constraint.
1e100 :: Num a => a

1e100 :: Fractional a => a

PackageImports

Package imports allows us to disambiguate hierarchical package names by their
respective package key. This is useful in the case where you have to imported
packages that expose the same module. In practice most of the common libraries
have taken care to avoid conflicts in the namespace and this is not usually a
problem in most modern Haskell.
For example we could explicitly ask GHC to resolve that Control.Monad.Error
package be drawn from the mtl library.
import qualified "mtl" Control.Monad.Error as Error
import qualified "mtl" Control.Monad.State as State
import qualified "mtl" Control.Monad.Reader as Reader

RecordWildCards

Record wild cards allow us to expand out the names of a record as variables
scoped as the labels of the record implicitly. The extension can be used to
extract variables names into a scope or to assign to variables in a record drawing,
aligning the record’s labels with the variables in scope for the assignment. The
syntax introduced is the {..} pattern selector.
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE OverloadedStrings #-}

import Data.Text

data Example = Example
{ e1 :: Int
, e2 :: Text
, e3 :: Text
} deriving (Show)

58

-- Extracting from a record using wildcards.
scope :: Example -> (Int, Text, Text)
scope Example {..} = (e1, e2, e3)

-- Assign to a record using wildcards.
assign :: Example
assign = Example {..}
where
(e1, e2, e3) = (1, "Kirk", "Picard")

NamedFieldPuns

Provides alternative syntax for accessing record fields in a pattern match.
data D = D {a :: Int, b :: Int}

f :: D -> Int
f D {a, b} = a - b

-- Order doesn't matter
g :: D -> Int
g D {b, a} = a - b

PatternSynonyms

Suppose we were writing a typechecker, it would be very common to include a
distinct TArr term to ease the telescoping of function signatures, this is what
GHC does in its Core language. Even though technically it could be written in
terms of more basic application of the (->) constructor.
data Type
= TVar TVar
| TCon TyCon
| TApp Type Type
| TArr Type Type
deriving (Show, Eq, Ord)

With pattern synonyms we can eliminate the extraneous constructor without
losing the convenience of pattern matching on arrow types.
{-# LANGUAGE PatternSynonyms #-}

pattern TArr t1 t2 = TApp (TApp (TCon "(->)") t1) t2

So now we can write an eliminator and constructor for arrow type very naturally.

59

{-# LANGUAGE PatternSynonyms #-}

import Data.List (foldl1')

type Name = String
type TVar = String
type TyCon = String

data Type
= TVar TVar
| TCon TyCon
| TApp Type Type
deriving (Show, Eq, Ord)

pattern TArr t1 t2 = TApp (TApp (TCon "(->)") t1) t2

tapp :: TyCon -> [Type] -> Type
tapp tcon args = foldl TApp (TCon tcon) args

arr :: [Type] -> Type
arr ts = foldl1' (\t1 t2 -> tapp "(->)" [t1, t2]) ts

elimTArr :: Type -> [Type]
elimTArr (TArr (TArr t1 t2) t3) = t1 : t2 : elimTArr t3
elimTArr (TArr t1 t2) = t1 : elimTArr t2
elimTArr t = [t]

-- (->) a ((->) b a)
-- a -> b -> a
to :: Type
to = arr [TVar "a", TVar "b", TVar "a"]

from :: [Type]
from = elimTArr to

Pattern synonyms can be exported from a module like any other definition by
prefixing them with the prefix pattern.
module MyModule (
pattern Elt

) where

pattern Elt = [a]

• Pattern Synonyms in GHC 8

60

http://mpickering.github.io/posts/2015-12-12-pattern-synonyms-8.html

DeriveTraversable

DeriveFoldable

DeriveFunctor

DeriveGeneric

DeriveAnyClass

With -XDeriveAnyClass we can derive any class. The deriving logic s generates
an instance declaration for the type with no explicitly-defined methods. If the
typeclass implements a default for each method then this will be well-defined
and give rise to an automatic instances.

StaticPointers

DuplicateRecordFields

GHC 8.0 introduced the DuplicateRecordFields extensions which loosens GHC’s
restriction on records in the same module with identical accessors. The precise
type that is being projected into is now deferred to the callsite.
{-# LANGUAGE DuplicateRecordFields #-}

data Person = Person { id :: Int }
data Animal = Animal { id :: Int }
data Vegetable = Vegetable { id :: Int }

test :: (Person, Animal, Vegetable)
test = (Person {id = 1}, Animal {id = 2}, Vegetable {id = 3})

Using just DuplicateRecordFields, projection is still not supported so the fol-
lowing will not work. OverloadedLabels fixes this to some extent.
test :: (Person, Animal, Vegetable)
test = (id (Person 1), id (Animal 2), id (Animal 3))

OverloadedLabels

GHC 8.0 also introduced the OverloadedLabels extension which allows a limited
form of polymorphism over labels that share the same
To work with overloaded labels types we need to enable several language exten-
sions to work with promoted strings and multiparam typeclasses that underly
it’s implementation.

61

extract :: IsLabel "id" t => t
extract = #id

{-# LANGUAGE OverloadedLabels #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE DuplicateRecordFields #-}
{-# LANGUAGE ExistentialQuantification #-}

import GHC.Records (HasField(..))
import GHC.OverloadedLabels (IsLabel(..))

data S = MkS { foo :: Int }
data T x y z = forall b . MkT { foo :: y, bar :: b }

instance HasField x r a => IsLabel x (r -> a) where
fromLabel = getField

main :: IO ()
main = do
print (#foo (MkS 42))
print (#foo (MkT True False))

See:
• OverloadedRecordFields revived

Cpp

The C++ preprocessor is the fallback whenever we really need to seperate out
logic that has to span multiple versions of GHC and language changes while
maintaining backwards compatibility. To dispatch on the version of GHC being
used to compile a module.
{-# LANGUAGE CPP #-}

#if (__GLASGOW_HASKELL__ > 710)
-- Imports for GHC 7.10.x
#else
-- Imports for other GHC
#endif

To demarcate code based on the operating system compiled on.
{-# LANGUAGE CPP #-}

#ifdef OS_Linux
-- Linux specific logic

62

http://www.well-typed.com/blog/2015/03/overloadedrecordfields-revived/

#else
ifdef OS_Win32
-- Windows specific logic

else
ifdef OS_Mac
-- Macintosh specific logic

else
-- Other operating systems

endif
endif
#endif

Or on the version of the base library used.
#if !MIN_VERSION_base(4,6,0)
-- Base specific logic

#endif

It can also be abused to do terrible things like metaprogrammming with strings,
but please don’t do this.

Historical Extensions

Several language extensions have either been absorbed into the core language or
become deprecated in favor of others. Others are just considered misfeatures.

• Rank2Types - Rank2Types has been subsumed by RankNTypes
• XPolymorphicComponents - Was an implementation detail of higher-rank

polymorphism that no longer exists.
• NPlusKPatterns - These were largely considered an ugly edge-case of pat-

tern matching language that was best removed.
• TraditionalRecordSyntax - Traditional record syntax was an extension to

the Haskell 98 specification for what we now consider standard record
syntax.

• OverlappingInstances - Subsumed by explicit OVERLAPPING pragmas.
• IncoherentInstances - Subsumed by explicit INCOHERENT pragmas.
• NullaryTypeClasses - Subsumed by explicit Multiparameter Typeclasses

with no parameters.

Type Classes

Minimal Annotations

In the presence of default implementations of typeclasses methods, there may
be several ways to implement a typeclass. For instance Eq is entirely defined
by either defining when two values are equal or not equal by implying taking

63

the negation of the other. We can define equality in terms of non-equality and
vice-versa.
class Eq a where
(==), (/=) :: a -> a -> Bool
x == y = not (x /= y)
x /= y = not (x == y)

Before 7.6.1 there was no way to specify what was the “minimal” definition
required to implement a typeclass
class Eq a where
(==), (/=) :: a -> a -> Bool
x == y = not (x /= y)
x /= y = not (x == y)
{-# MINIMAL (==) #-}
{-# MINIMAL (/=) #-}

Minimal pragmas are boolean expressions, with | as logical OR, either definition
must be defined). Comma indicates logical AND where both sides both definitions
must be defined.
{-# MINIMAL (==) | (/=) #-} -- Either (==) or (/=)
{-# MINIMAL (==) , (/=) #-} -- Both (==) and (/=)

Compiling the -Wmissing-methods will warn when a instance is defined that
does not meet the minimal criterion.

FlexibleInstances

{-# LANGUAGE FlexibleInstances #-}

class MyClass a

-- Without flexible instances, all instance heads must be type variable. The
-- following would be legal.
instance MyClass (Maybe a)

-- With flexible instances, typeclass heads can be arbitrary nested types. The
-- following would be forbidden without it.
instance MyClass (Maybe Int)

FlexibleContexts

{-# LANGUAGE FlexibleContexts #-}

class MyClass a

64

-- Without flexible contexts, all contexts must be type variable. The
-- following would be legal.
instance (MyClass a) => MyClass (Either a b)

-- With flexible contexts, typeclass contexts can be arbitrary nested types. The
-- following would be forbidden without it.
instance (MyClass (Maybe a)) => MyClass (Either a b)

OverlappingInstances

Typeclasses are normally globally coherent, there is only ever one instance that
can be resolved for a type unambiguously for a type at any call site in the
program. There are however extensions to loosen this restriction and perform
more manual direction of the instance search.
Overlapping instances loosens the coherent condition (there can be multiple
instances) but introduces a criterion that it will resolve to the most specific one.
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE OverlappingInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
fn :: (a,b)

instance MyClass Int b where
fn = error "b"

instance MyClass a Int where
fn = error "a"

instance MyClass Int Int where
fn = error "c"

example :: (Int, Int)
example = fn

Historically enabling this on module-level was not the best idea, since generally
we define multiple classes in a module only a subset of which may be incoherent.
So as of 7.10 we now have the capacity to just annotate instances with the
OVERLAPPING and INCOHERENT pragmas.
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
fn :: (a,b)

65

instance {-# OVERLAPPING #-} MyClass Int b where
fn = error "b"

instance {-# OVERLAPPING #-} MyClass a Int where
fn = error "a"

instance {-# OVERLAPPING #-} MyClass Int Int where
fn = error "c"

example :: (Int, Int)
example = fn

IncoherentInstances

Incoherent instance loosens the restriction that there be only one specific in-
stance, will choose one arbitrarily (based on the arbitrary sorting of it’s internal
representation) and the resulting program will typecheck. This is generally
pretty crazy and usually a sign of poor design.
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE IncoherentInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
fn :: (a,b)

instance MyClass Int b where
fn = error "a"

instance MyClass a Int where
fn = error "b"

example :: (Int, Int)
example = fn

There is also an incoherent instance.
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
fn :: (a,b)

instance {-# INCOHERENT #-} MyClass a Int where
fn = error "general"

66

instance {-# INCOHERENT #-} MyClass Int Int where
fn = error "specific"

example :: (Int, Int)
example = fn

TypeSynonymInstances

{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}

type IntList = [Int]

class MyClass a

-- Without type synonym instances, we're forced to manually expand out type
-- synonyms in the typeclass head.
instance MyClass [Int]

-- Without it GHC will do this for us automatically. Type synonyms still need to
-- be fully applied.
instance MyClass IntList

Laziness

Again, a subject on which much ink has been spilled. There is an ongoing
discussion in the land of Haskell about the compromises between lazy and strict
evaluation, and there are nuanced arguments for having either paradigm be
the default. Haskell takes a hybrid approach and allows strict evaluation when
needed and uses laziness by default. Needless to say, we can always find examples
where strict evaluation exhibits worse behavior than lazy evaluation and vice
versa.
The primary advantage of lazy evaluation in the large is that algorithms that
operate over both unbounded and bounded data structures can inhabit the same
type signatures and be composed without additional need to restructure their
logic or force intermediate computations. Languages that attempt to bolt lazi-
ness on to a strict evaluation model often bifurcate classes of algorithms into
ones that are hand-adjusted to consume unbounded structures and those which
operate over bounded structures. In strict languages mixing and matching be-
tween lazy vs strict processing often necessitates manifesting large intermediate
structures in memory when such composition would “just work” in a lazy lan-
guage.

67

By virtue of Haskell being the only language to actually explore this point in the
design space to the point of being industrial strength; knowledge about lazy eval-
uation is not widely absorbed into the collective programmer consciousness and
can often be non-intuitive to the novice. This doesn’t reflect on the model itself,
merely on the need for more instruction material and research on optimizing
lazy compilers.
The paradox of Haskell is that it explores so many definably unique ideas (lazi-
ness, purity, typeclasses) that it becomes difficult to separate out the discussion
of any one from the gestalt of the whole implementation.
See:

• Oh My Laziness!
• Reasoning about Laziness
• Lazy Evaluation of Haskell
• More Points For Lazy Evaluation
• How Lazy Evaluation Works in Haskell

Strictness

There are several evaluation models for the lambda calculus:
• Strict - Evaluation is said to be strict if all arguments are evaluated before

the body of a function.
• Non-strict - Evaluation is non-strict if the arguments are not necessarily

evaluated before entering the body of a function.
These ideas give rise to several models, Haskell itself use the call-by-need model.

Model Strictness Description
Call-by-value Strict arguments evaluated before function entered
Call-by-name Non-strict arguments passed unevaluated
Call-by-need Non-strict arguments passed unevaluated but an expression is only evaluated once (sharing)

Seq and WHNF

A term is said to be in weak head normal-form if the outermost constructor
or lambda cannot be reduced further. A term is said to be in normal form if
it is fully evaluated and all sub-expressions and thunks contained within are
evaluated.
-- In Normal Form
42
(2, "foo")
\x -> x + 1

68

http://alpmestan.com/posts/2013-10-02-oh-my-laziness.html
http://www.slideshare.net/tibbe/reasoning-about-laziness
http://www.vex.net/~trebla/haskell/lazy.xhtml
http://augustss.blogspot.hu/2011/05/more-points-for-lazy-evaluation-in.html
https://hackhands.com/lazy-evaluation-works-haskell/

-- Not in Normal Form
1 + 2
(\x -> x + 1) 2
"foo" ++ "bar"
(1 + 1, "foo")

-- In Weak Head Normal Form
(1 + 1, "foo")
\x -> 2 + 2
'f' : ("oo" ++ "bar")

-- Not In Weak Head Normal Form
1 + 1
(\x -> x + 1) 2
"foo" ++ "bar"

In Haskell normal evaluation only occurs at the outer constructor of case-
statements in Core. If we pattern match on a list we don’t implicitly force
all values in the list. An element in a data structure is only evaluated up to
the most outer constructor. For example, to evaluate the length of a list we
need only scrutinize the outer Cons constructors without regard for their inner
values.
�: length [undefined, 1]
2

�: head [undefined, 1]
Prelude.undefined

�: snd (undefined, 1)
1

�: fst (undefined, 1)
Prelude.undefined

For example, in a lazy language the following program terminates even though
it contains diverging terms.
ignore :: a -> Int
ignore x = 0

loop :: a
loop = loop

main :: IO ()
main = print $ ignore loop

69

In a strict language like OCaml (ignoring its suspensions for the moment), the
same program diverges.
let ignore x = 0;;
let rec loop a = loop a;;

print_int (ignore (loop ()));

In Haskell a thunk is created to stand for an unevaluated computation. Evalua-
tion of a thunk is called forcing the thunk. The result is an update, a referentially
transparent effect, which replaces the memory representation of the thunk with
the computed value. The fundamental idea is that a thunk is only updated once
(although it may be forced simultaneously in a multi-threaded environment)
and its resulting value is shared when referenced subsequently.
The command :sprint can be used to introspect the state of unevaluated thunks
inside an expression without forcing evaluation. For instance:
�: let a = [1..] :: [Integer]
�: let b = map (+ 1) a

�: :sprint a
a = _
�: :sprint b
b = _
�: a !! 4
5
�: :sprint a
a = 1 : 2 : 3 : 4 : 5 : _
�: b !! 10
12
�: :sprint a
a = 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 : 11 : _
�: :sprint b
b = _ : _ : _ : _ : _ : _ : _ : _ : _ : _ : 12 : _

While a thunk is being computed its memory representation is replaced with a
special form known as blackhole which indicates that computation is ongoing
and allows for a short circuit for when a computation might depend on itself to
complete. The implementation of this is some of the more subtle details of the
GHC runtime.
The seq function introduces an artificial dependence on the evaluation of order
of two terms by requiring that the first argument be evaluated to WHNF before
the evaluation of the second. The implementation of the seq function is an
implementation detail of GHC.
seq :: a -> b -> b

70

� `seq` a = �
a `seq` b = b

The infamous foldl is well-known to leak space when used carelessly and with-
out several compiler optimizations applied. The strict foldl' variant uses seq
to overcome this.
foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' _ z [] = z
foldl' f z (x:xs) = let z' = f z x in z' `seq` foldl' f z' xs

In practice, a combination between the strictness analyzer and the inliner on
-O2 will ensure that the strict variant of foldl is used whenever the function is
inlinable at call site so manually using foldl' is most often not required.
Of important note is that GHCi runs without any optimizations applied so the
same program that performs poorly in GHCi may not have the same perfor-
mance characteristics when compiled with GHC.

Strictness Annotations

The extension BangPatterns allows an alternative syntax to force arguments
to functions to be wrapped in seq. A bang operator on an arguments forces
its evaluation to weak head normal form before performing the pattern match.
This can be used to keep specific arguments evaluated throughout recursion
instead of creating a giant chain of thunks.
{-# LANGUAGE BangPatterns #-}

sum :: Num a => [a] -> a
sum = go 0
where
go !acc (x:xs) = go (acc + x) xs
go acc [] = acc

This is desugared into code effectively equivalent to the following:
sum :: Num a => [a] -> a
sum = go 0
where
go acc _ | acc `seq` False = undefined
go acc (x:xs) = go (acc + x) xs
go acc [] = acc

Function application to seq’d arguments is common enough that it has a special
operator.

71

($!) :: (a -> b) -> a -> b
f $! x = let !vx = x in f vx

Strict Haskell

As of GHC 8.0 strictness annotations can be applied to all definitions in a
module automatically. In previous versions it was necessary to definitions via
explicit syntactic annotations at all sites.

StrictData
Enabling StrictData makes constructor fields strict by default on any module it
is enabled on.
{-# LANGUAGE StrictData #-}

data Employee = Employee
{ name :: T.Text
, age :: Int
}

Is equivalent to:
data Employee = Employee
{ name :: !T.Text
, age :: !Int
}

Strict
Strict implies -XStrictData and extends strictness annotations to all arguments
of functions.
f x y = x + y

Is equivalent to the following function declaration with explicit bang patterns:
f !x !y = x + y

On a module-level this effectively makes Haskell a call-by-value language with
some caveats. All arguments to functions are now explicitly evaluated and all
data in constructors within this module are in head normal form by construction.
However there are some subtle points to this that are better explained in the
language guide.

• Strict Extensions

72

https://downloads.haskell.org/~ghc/master/users-guide//glasgow_exts.html?highlight=typefamilydependencies#strict-by-default-pattern-bindings

Deepseq

There are often times when for performance reasons we need to deeply evaluate
a data structure to normal form leaving no terms unevaluated. The deepseq
library performs this task.
The typeclass NFData (Normal Form Data) allows us to seq all elements of a
structure across any subtypes which themselves implement NFData.
class NFData a where
rnf :: a -> ()
rnf a = a `seq` ()

deepseq :: NFData a => a -> b -> a
($!!) :: (NFData a) => (a -> b) -> a -> b

instance NFData Int
instance NFData (a -> b)

instance NFData a => NFData (Maybe a) where
rnf Nothing = ()
rnf (Just x) = rnf x

instance NFData a => NFData [a] where
rnf [] = ()
rnf (x:xs) = rnf x `seq` rnf xs

[1, undefined] `seq` ()
-- ()

[1, undefined] `deepseq` ()
-- Prelude.undefined

To force a data structure itself to be fully evaluated we share the same argument
in both positions of deepseq.
force :: NFData a => a
force x = x `deepseq` x

Irrefutable Patterns

A lazy pattern doesn’t require a match on the outer constructor, instead it lazily
calls the accessors of the values as needed. In the presence of a bottom, we fail
at the usage site instead of the outer pattern match.
f :: (a, b) -> Int
f (a,b) = const 1 a

g :: (a, b) -> Int

73

g ~(a,b) = const 1 a

-- �: f undefined
-- *** Exception: Prelude.undefined
-- �: g undefined
-- 1

j :: Maybe t -> t
j ~(Just x) = x

k :: Maybe t -> t
k (Just x) = x

-- �: j Nothing
-- *** Exception: src/05-laziness/lazy_patterns.hs:15:1-15: Irrefutable pattern failed for pattern (Just x)
--
-- �: k Nothing
-- *** Exception: src/05-laziness/lazy_patterns.hs:18:1-14: Non-exhaustive patterns in function k

Prelude

What to Avoid?

Haskell being a 25 year old language has witnessed several revolutions in the way
we structure and compose functional programs. Yet as a result several portions
of the Prelude still reflect old schools of thought that simply can’t be removed
without breaking significant parts of the ecosystem.
Currently it really only exists in folklore which parts to use and which not to
use, although this is a topic that almost all introductory books don’t mention
and instead make extensive use of the Prelude for simplicity’s sake.
The short version of the advice on the Prelude is:

• Avoid String.
• Use fmap instead of map.
• Use Foldable and Traversable instead of the Control.Monad, and Data.List

versions of traversals.
• Avoid partial functions like head and read or use their total variants.
• Avoid exceptions, use ExceptT or Either instead.
• Avoid boolean blind functions.

The instances of Foldable for the list type often conflict with the monomorphic
versions in the Prelude which are left in for historical reasons. So often times
it is desirable to explicitly mask these functions from implicit import and force
the use of Foldable and Traversable instead.

74

Of course often times one wishes only to use the Prelude explicitly and one can
explicitly import it qualified and use the pieces as desired without the implicit
import of the whole namespace.
import qualified Prelude as P

What Should be in Base

To get work done you probably need.
• async
• bytestring
• containers
• mtl
• stm
• text
• transformers
• unordered-containers
• vector
• filepath
• directory
• containers
• process
• unix
• deepseq
• optparse-applicative

Custom Preludes

The default Prelude can be disabled in it’s entirety by twiddling the
-XNoImplicitPrelude flag.
{-# LANGUAGE NoImplicitPrelude #-}

We are then free to build an equivalent Prelude that is more to our liking. Using
module reexporting we can pluck the good parts of the prelude and libraries like
safe to build up a more industrial focused set of default functions. For example:
module Custom (
module Exports,

) where

import Data.Int as Exports
import Data.Tuple as Exports
import Data.Maybe as Exports
import Data.String as Exports
import Data.Foldable as Exports

75

import Data.Traversable as Exports

import Control.Monad.Trans.Except
as Exports
(ExceptT(ExceptT), Except, except, runExcept, runExceptT,
mapExcept, mapExceptT, withExcept, withExceptT)

The Prelude itself is entirely replicable as well presuming that an entire project
is compiled without the implicit Prelude. Several packages have arisen that
supply much of the same functionality in a way that appeals to more modern
design principles.

• base-prelude
• basic-prelude
• classy-prelude
• Other Preludes

Partial Functions

A partial function is a function which doesn’t terminate and yield a value for
all given inputs. Conversely a total function terminates and is always defined
for all inputs. As mentioned previously, certain historical parts of the Prelude
are full of partial functions.
The difference between partial and total functions is the compiler can’t rea-
son about the runtime safety of partial functions purely from the information
specified in the language and as such the proof of safety is left to the user to
guarantee. They are safe to use in the case where the user can guarantee that
invalid inputs cannot occur, but like any unchecked property its safety or not-
safety is going to depend on the diligence of the programmer. This very much
goes against the overall philosophy of Haskell and as such they are discouraged
when not necessary.
head :: [a] -> a
read :: Read a => String -> a
(!!) :: [a] -> Int -> a

Safe

The Prelude has total variants of the historical partial functions (i.e.
Text.Read.readMaybe)in some cases, but often these are found in the various
utility libraries like safe.
The total versions provided fall into three cases:

• May - return Nothing when the function is not defined for the inputs
• Def - provide a default value when the function is not defined for the

inputs

76

http://hackage.haskell.org/package/base-prelude
http://hackage.haskell.org/package/basic-prelude
http://hackage.haskell.org/package/classy-prelude
https://hackage.haskell.org/packages/#cat:Prelude

• Note - call error with a custom error message when the function is not
defined for the inputs. This is not safe, but slightly easier to debug!

-- Total
headMay :: [a] -> Maybe a
readMay :: Read a => String -> Maybe a
atMay :: [a] -> Int -> Maybe a

-- Total
headDef :: a -> [a] -> a
readDef :: Read a => a -> String -> a
atDef :: a -> [a] -> Int -> a

-- Partial
headNote :: String -> [a] -> a
readNote :: Read a => String -> String -> a
atNote :: String -> [a] -> Int -> a

Boolean Blindness

data Bool = True | False

isJust :: Maybe a -> Bool
isJust (Just x) = True
isJust Nothing = False

The problem with the boolean type is that there is effectively no difference
between True and False at the type level. A proposition taking a value to a Bool
takes any information given and destroys it. To reason about the behavior we
have to trace the provenance of the proposition we’re getting the boolean answer
from, and this introduces a whole slew of possibilities for misinterpretation. In
the worst case, the only way to reason about safe and unsafe use of a function
is by trusting that a predicate’s lexical name reflects its provenance!
For instance, testing some proposition over a Bool value representing whether
the branch can perform the computation safely in the presence of a null is subject
to accidental interchange. Consider that in a language like C or Python testing
whether a value is null is indistinguishable to the language from testing whether
the value is not null. Which of these programs encodes safe usage and which
segfaults?
This one?
if p(x):

use x
elif not p(x):

don't use x

77

Or this one?
if p(x):

don't use x
elif not p(x):

use x

From inspection we can’t tell without knowing how p is defined, the compiler
can’t distinguish the two either and thus the language won’t save us if we happen
to mix them up. Instead of making invalid states unrepresentable we’ve made
the invalid state indistinguishable from the valid one!
The more desirable practice is to match on terms which explicitly witness the
proposition as a type (often in a sum type) and won’t typecheck otherwise.
case x of
Just a -> use x
Nothing -> don't use x

-- not ideal
case p x of
True -> use x
False -> don't use x

-- not ideal
if p x
then use x
else don't use x

To be fair though, many popular languages completely lack the notion of sum
types (the source of many woes in my opinion) and only have product types, so
this type of reasoning sometimes has no direct equivalence for those not familiar
with ML family languages.
In Haskell, the Prelude provides functions like isJust and fromJust both of
which can be used to subvert this kind of reasoning and make it easy to introduce
bugs and should often be avoided.

Foldable / Traversable

If coming from an imperative background retraining one’s self to think about
iteration over lists in terms of maps, folds, and scans can be challenging.
Prelude.foldl :: (a -> b -> a) -> a -> [b] -> a
Prelude.foldr :: (a -> b -> b) -> b -> [a] -> b

-- pseudocode
foldr f z [a...] = f a (f b (... (f y z) ...))
foldl f z [a...] = f ... (f (f z a) b) ... y

78

For a concrete consider the simple arithmetic sequence over the binary operator
(+):
-- foldr (+) 1 [2..]
(1 + (2 + (3 + (4 + ...))))

-- foldl (+) 1 [2..]
((((1 + 2) + 3) + 4) + ...)

Foldable and Traversable are the general interface for all traversals and folds
of any data structure which is parameterized over its element type (List, Map,
Set, Maybe, …). These two classes are used everywhere in modern Haskell and
are extremely important.
A foldable instance allows us to apply functions to data types of monoidal values
that collapse the structure using some logic over mappend.
A traversable instance allows us to apply functions to data types that walk the
structure left-to-right within an applicative context.
class (Functor f, Foldable f) => Traversable f where
traverse :: Applicative g => (a -> g b) -> f a -> g (f b)

class Foldable f where
foldMap :: Monoid m => (a -> m) -> f a -> m

The foldMap function is extremely general and non-intuitively many of the
monomorphic list folds can themselves be written in terms of this single poly-
morphic function.
foldMap takes a function of values to a monoidal quantity, a functor over the
values and collapses the functor into the monoid. For instance for the trivial
Sum monoid:
�: foldMap Sum [1..10]
Sum {getSum = 55}

For instance if we wanted to map a list of some abstract element types into a
hashtable of elements based on pattern matching we could use it.
import Data.Foldable
import qualified Data.Map as Map

data Elt
= Elt Int Double
| Nil

foo :: [Elt] -> Map.Map Int Double
foo = foldMap go
where
go (Elt x y) = Map.singleton x y
go Nil = Map.empty

79

The full Foldable class (with all default implementations) contains a variety of
derived functions which themselves can be written in terms of foldMap and
Endo.
newtype Endo a = Endo {appEndo :: a -> a}

instance Monoid (Endo a) where
mempty = Endo id
Endo f `mappend` Endo g = Endo (f . g)

class Foldable t where
fold :: Monoid m => t m -> m
foldMap :: Monoid m => (a -> m) -> t a -> m

foldr :: (a -> b -> b) -> b -> t a -> b
foldr' :: (a -> b -> b) -> b -> t a -> b

foldl :: (b -> a -> b) -> b -> t a -> b
foldl' :: (b -> a -> b) -> b -> t a -> b

foldr1 :: (a -> a -> a) -> t a -> a
foldl1 :: (a -> a -> a) -> t a -> a

For example:
foldr :: (a -> b -> b) -> b -> t a -> b
foldr f z t = appEndo (foldMap (Endo . f) t) z

Most of the operations over lists can be generalized in terms of combinations
of Foldable and Traversable to derive more general functions that work over all
data structures implementing Foldable.
Data.Foldable.elem :: (Eq a, Foldable t) => a -> t a -> Bool
Data.Foldable.sum :: (Num a, Foldable t) => t a -> a
Data.Foldable.minimum :: (Ord a, Foldable t) => t a -> a
Data.Traversable.mapM :: (Monad m, Traversable t) => (a -> m b) -> t a -> m (t b)

Unfortunately for historical reasons the names exported by foldable quite often
conflict with ones defined in the Prelude, either import them qualified or just
disable the Prelude. The operations in the Foldable all specialize to the same
and behave the same as the ones in Prelude for List types.
import Data.Monoid
import Data.Foldable
import Data.Traversable

import Control.Applicative
import Control.Monad.Identity (runIdentity)
import Prelude hiding (mapM_, foldr)

80

-- Rose Tree
data Tree a = Node a [Tree a] deriving (Show)

instance Functor Tree where
fmap f (Node x ts) = Node (f x) (fmap (fmap f) ts)

instance Traversable Tree where
traverse f (Node x ts) = Node <$> f x <*> traverse (traverse f) ts

instance Foldable Tree where
foldMap f (Node x ts) = f x `mappend` foldMap (foldMap f) ts

tree :: Tree Integer
tree = Node 1 [Node 1 [], Node 2 [] ,Node 3 []]

example1 :: IO ()
example1 = mapM_ print tree

example2 :: Integer
example2 = foldr (+) 0 tree

example3 :: Maybe (Tree Integer)
example3 = traverse (\x -> if x > 2 then Just x else Nothing) tree

example4 :: Tree Integer
example4 = runIdentity $ traverse (\x -> pure (x+1)) tree

The instances we defined above can also be automatically derived by GHC using
several language extensions. The automatic instances are identical to the hand-
written versions above.
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveTraversable #-}

data Tree a = Node a [Tree a]
deriving (Show, Functor, Foldable, Traversable)

See: Typeclassopedia

Corecursion

unfoldr :: (b -> Maybe (a, b)) -> b -> [a]

81

http://wiki.haskell.org/Typeclassopedia

A recursive function consumes data and eventually terminates, a corecursive
function generates data and coterminates. A corecursive function is said to
be productive if it can always evaluate more of the resulting value in bounded
time.
import Data.List

f :: Int -> Maybe (Int, Int)
f 0 = Nothing
f x = Just (x, x-1)

rev :: [Int]
rev = unfoldr f 10

fibs :: [Int]
fibs = unfoldr (\(a,b) -> Just (a,(b,a+b))) (0,1)

split

The split package provides a variety of missing functions for splitting list and
string types.
import Data.List.Split

example1 :: [String]
example1 = splitOn "." "foo.bar.baz"
-- ["foo","bar","baz"]

example2 :: [String]
example2 = chunksOf 10 "To be or not to be that is the question."
-- ["To be or n","ot to be t","hat is the"," question."]

monad-loops

The monad-loops package provides a variety of missing functions for control
logic in monadic contexts.
whileM :: Monad m => m Bool -> m a -> m [a]
untilM :: Monad m => m a -> m Bool -> m [a]
iterateUntilM :: Monad m => (a -> Bool) -> (a -> m a) -> a -> m a
whileJust :: Monad m => m (Maybe a) -> (a -> m b) -> m [b]

82

http://hackage.haskell.org/package/split-0.1.1/docs/Data-List-Split.html
http://hackage.haskell.org/package/monad-loops-0.4.2/docs/Control-Monad-Loops.html

Strings

String

The default String type is broken and should be avoided whenever possible.
Unfortunately for historical reasons large portions of GHC and Base depend on
String.
The default Haskell string type is implemented as a naive linked list of characters,
this is terrible for most purposes but no one knows how to fix it without rewriting
large portions of all code that exists and nobody can commit the time to fix it.
So it remains broken, likely forever.
type String = [Char]

For more performance sensitive cases there are two libraries for processing tex-
tual data: text and bytestring.

• text - Used for handling unicode data.
• bytestring - Used for handling ASCII data that needs to interchanged with

C code or network protocols.
For each of these there are two variants for both text and bytestring.

• lazy Lazy text objects are encoded as lazy lists of strict chunks of bytes.
• strict Byte vectors are encoded as strict Word8 arrays of bytes or code

points
Giving rise to the four types.

Variant Module
strict text Data.Text
lazy text Data.Text.Lazy
strict bytestring Data.ByteString
lazy bytestring Data.ByteString.Lazy

Conversions
Conversions between strings types (from : left column, to : top row) are done
with several functions across the bytestring and text libraries. The mapping
between text and bytestring is inherently lossy so there is some degree of freedom
in choosing the encoding. We’ll just consider utf-8 for simplicity.

Data.Text Data.Text.Lazy Data.ByteString Data.ByteString.Lazy
Data.Text id fromStrict encodeUtf8 encodeUtf8
Data.Text.Lazy toStrict id encodeUtf8 encodeUtf8
Data.ByteString decodeUtf8 decodeUtf8 id fromStrict
Data.ByteString.Lazy decodeUtf8 decodeUtf8 toStrict id

83

Data.Text Data.Text.Lazy Data.ByteString Data.ByteString.Lazy

Overloaded Strings
With the -XOverloadedStrings extension string literals can be overloaded with-
out the need for explicit packing and can be written as string literals in the
Haskell source and overloaded via a typeclass IsString. Sometimes this is
desirable.
class IsString a where
fromString :: String -> a

For instance:
�: :type "foo"
"foo" :: [Char]

�: :set -XOverloadedStrings

�: :type "foo"
"foo" :: IsString a => a

We can also derive IsString for newtypes using GeneralizedNewtypeDeriving,
although much of the safety of the newtype is then lost if it is interchangeable
with other strings.
newtype Cat = Cat Text
deriving (IsString)

fluffy :: Cat
fluffy = "Fluffy"

Import Conventions

import qualified Data.Text as T
import qualified Data.Text.Lazy as TL
import qualified Data.ByteString as BS
import qualified Data.ByteString.Lazy as BL
import qualified Data.ByteString.Char8 as C
import qualified Data.ByteString.Lazy.Char8 as CL

import qualified Data.Text.IO as TIO
import qualified Data.Text.Lazy.IO as TLIO

import qualified Data.Text.Encoding as TE
import qualified Data.Text.Lazy.Encoding as TLE

84

Text

A Text type is a packed blob of Unicode characters.
pack :: String -> Text
unpack :: Text -> String

{-# LANGUAGE OverloadedStrings #-}

import qualified Data.Text as T

-- From pack
myTStr1 :: T.Text
myTStr1 = T.pack ("foo" :: String)

-- From overloaded string literal.
myTStr2 :: T.Text
myTStr2 = "bar"

See: Text

Text.Builder

toLazyText :: Builder -> Data.Text.Lazy.Internal.Text
fromLazyText :: Data.Text.Lazy.Internal.Text -> Builder

The Text.Builder allows the efficient monoidal construction of lazy Text types
without having to go through inefficient forms like String or List types as inter-
mediates.
{-# LANGUAGE OverloadedStrings #-}

import Data.Monoid (mconcat, (<>))

import Data.Text.Lazy.Builder (Builder, toLazyText)
import Data.Text.Lazy.Builder.Int (decimal)
import qualified Data.Text.Lazy.IO as L

beer :: Int -> Builder
beer n = decimal n <> " bottles of beer on the wall.\n"

wall :: Builder
wall = mconcat $ fmap beer [1..1000]

main :: IO ()
main = L.putStrLn $ toLazyText wall

85

http://hackage.haskell.org/package/text-1.1.0.1/docs/Data-Text.html

ByteString

ByteStrings are arrays of unboxed characters with either strict or lazy evalua-
tion.
pack :: String -> ByteString
unpack :: ByteString -> String

{-# LANGUAGE OverloadedStrings #-}

import qualified Data.ByteString as S
import qualified Data.ByteString.Char8 as S8

-- From pack
bstr1 :: S.ByteString
bstr1 = S.pack ("foo" :: String)

-- From overloaded string literal.
bstr2 :: S.ByteString
bstr2 = "bar"

See:
• Bytestring: Bits and Pieces
• ByteString

Printf

Haskell also has a variadic printf function in the style of C.
import Data.Text
import Text.Printf

a :: Int
a = 3

b :: Double
b = 3.14159

c :: String
c = "haskell"

example :: String
example = printf "(%i, %f, %s)" a b c
-- "(3, 3.14159, haskell)"

86

https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/bytestring-bits-and-pieces
http://hackage.haskell.org/package/bytestring-0.10.4.0/docs/Data-ByteString.html

Overloaded Lists

It is ubiquitous for data structure libraries to expose toList and fromList
functions to construct various structures out of lists. As of GHC 7.8 we now have
the ability to overload the list syntax in the surface language with a typeclass
IsList.
class IsList l where
type Item l
fromList :: [Item l] -> l
toList :: l -> [Item l]

instance IsList [a] where
type Item [a] = a
fromList = id
toList = id

�: :type [1,2,3]
[1,2,3] :: (Num (Item l), IsList l) => l

{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE TypeFamilies #-}

import qualified Data.Map as Map
import GHC.Exts (IsList(..))

instance (Ord k) => IsList (Map.Map k v) where
type Item (Map.Map k v) = (k,v)
fromList = Map.fromList
toList = Map.toList

example1 :: Map.Map String Int
example1 = [("a", 1), ("b", 2)]

String Conversions

Playing “type-tetris” to convert between Strings explicitly can be frustrating,
fortunately there are several packages that automate the conversion using type-
classes to automatically convert between any two common string representations
automatically. We can then write generic comparison and concatenation opera-
tors that automatically convert types of operands to a like form.
{-# LANGUAGE OverloadedStrings #-}

import Data.String.Conv

import qualified Data.Text as T

87

import qualified Data.Text.Lazy.IO as TL

import qualified Data.ByteString as B
import qualified Data.ByteString.Lazy as BL

import Data.Monoid

a :: String
a = "Gödel"

b :: BL.ByteString
b = "Einstein"

c :: T.Text
c = "Feynmann"

d :: B.ByteString
d = "Schrödinger"

-- Compare unlike strings
(==~) :: (Eq a, StringConv b a) => a -> b -> Bool
(==~) a b = a == toS b

-- Concat unlike strings
(<>~) :: (Monoid a, StringConv b a) => a -> b -> a
(<>~) a b = a <> toS b

main :: IO ()
main = do
putStrLn (toS a)
TL.putStrLn (toS b)
print (a ==~ b)
print (c ==~ d)
print (c ==~ c)
print (b <>~ c)

Applicatives

Like monads Applicatives are an abstract structure for a wide class of compu-
tations that sit between functors and monads in terms of generality.
pure :: Applicative f => a -> f a
(<$>) :: Functor f => (a -> b) -> f a -> f b
(<*>) :: f (a -> b) -> f a -> f b

88

As of GHC 7.6, Applicative is defined as:
class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

(<$>) :: Functor f => (a -> b) -> f a -> f b
(<$>) = fmap

With the following laws:
pure id <*> v = v
pure f <*> pure x = pure (f x)
u <*> pure y = pure ($ y) <*> u
u <*> (v <*> w) = pure (.) <*> u <*> v <*> w

As an example, consider the instance for Maybe:
instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
_ <*> Nothing = Nothing
Just f <*> Just x = Just (f x)

As a rule of thumb, whenever we would use m >>= return . f what we probably
want is an applicative functor, and not a monad.
import Network.HTTP
import Control.Applicative ((<$>),(<*>))

example1 :: Maybe Integer
example1 = (+) <$> m1 <*> m2
where
m1 = Just 3
m2 = Nothing

-- Nothing

example2 :: [(Int, Int, Int)]
example2 = (,,) <$> m1 <*> m2 <*> m3
where
m1 = [1,2]
m2 = [10,20]
m3 = [100,200]

-- [(1,10,100),(1,10,200),(1,20,100),(1,20,200),(2,10,100),(2,10,200),(2,20,100),(2,20,200)]

example3 :: IO String
example3 = (++) <$> fetch1 <*> fetch2
where
fetch1 = simpleHTTP (getRequest "http://www.fpcomplete.com/") >>= getResponseBody
fetch2 = simpleHTTP (getRequest "http://www.haskell.org/") >>= getResponseBody

89

The pattern f <$> a <*> b ... shows up so frequently that there are a family
of functions to lift applicatives of a fixed number arguments. This pattern also
shows up frequently with monads (liftM, liftM2, liftM3).
liftA :: Applicative f => (a -> b) -> f a -> f b
liftA f a = pure f <*> a

liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
liftA2 f a b = f <$> a <*> b

liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 f a b c = f <$> a <*> b <*> c

Applicative also has functions *> and <* that sequence applicative actions while
discarding the value of one of the arguments. The operator *> discard the left
while <* discards the right. For example in a monadic parser combinator library
the *> would parse with first parser argument but return the second.
The Applicative functions <$> and <*> are generalized by liftM and ap for
monads.
import Control.Monad
import Control.Applicative

data C a b = C a b

mnd :: Monad m => m a -> m b -> m (C a b)
mnd a b = C `liftM` a `ap` b

apl :: Applicative f => f a -> f b -> f (C a b)
apl a b = C <$> a <*> b

See: Applicative Programming with Effects

Alternative

Alternative is an extension of the Applicative class with a zero element and an
associative binary operation respecting the zero.
class Applicative f => Alternative f where
-- | The identity of '<|>'
empty :: f a
-- | An associative binary operation
(<|>) :: f a -> f a -> f a
-- | One or more.
some :: f a -> f [a]
-- | Zero or more.
many :: f a -> f [a]

90

http://www.soi.city.ac.uk/~ross/papers/Applicative.pdf

optional :: Alternative f => f a -> f (Maybe a)

instance Alternative Maybe where
empty = Nothing
Nothing <|> r = r
l <|> _ = l

instance Alternative [] where
empty = []
(<|>) = (++)

�: foldl1 (<|>) [Nothing, Just 5, Just 3]
Just 5

These instances show up very frequently in parsers where the alternative oper-
ator can model alternative parse branches.

Arrows

A category is an algebraic structure that includes a notion of an identity and a
composition operation that is associative and preserves identities.
class Category cat where
id :: cat a a
(.) :: cat b c -> cat a b -> cat a c

instance Category (->) where
id = Prelude.id
(.) = (Prelude..)

(<<<) :: Category cat => cat b c -> cat a b -> cat a c
(<<<) = (.)

(>>>) :: Category cat => cat a b -> cat b c -> cat a c
f >>> g = g . f

Arrows are an extension of categories with the notion of products.
class Category a => Arrow a where
arr :: (b -> c) -> a b c
first :: a b c -> a (b,d) (c,d)
second :: a b c -> a (d,b) (d,c)
(***) :: a b c -> a b' c' -> a (b,b') (c,c')
(&&&) :: a b c -> a b c' -> a b (c,c')

The canonical example is for functions.
instance Arrow (->) where
arr f = f
first f = f *** id

91

second f = id *** f
(***) f g ~(x,y) = (f x, g y)

In this form functions of multiple arguments can be threaded around using the
arrow combinators in a much more pointfree form. For instance a histogram
function has a nice one-liner.
import Data.List (group, sort)

histogram :: Ord a => [a] -> [(a, Int)]
histogram = map (head &&& length) . group . sort

�: histogram "Hello world"
[(' ',1),('H',1),('d',1),('e',1),('l',3),('o',2),('r',1),('w',1)]

Arrow notation
GHC has builtin syntax for composing arrows using proc notation. The follow-
ing are equivalent after desugaring:
{-# LANGUAGE Arrows #-}

addA :: Arrow a => a b Int -> a b Int -> a b Int
addA f g = proc x -> do

y <- f -< x
z <- g -< x
returnA -< y + z

addA f g = arr (\ x -> (x, x)) >>>
first f >>> arr (\ (y, x) -> (x, y)) >>>
first g >>> arr (\ (z, y) -> y + z)

addA f g = f &&& g >>> arr (\ (y, z) -> y + z)

In practice this notation is not often used and may become deprecated in the
future.
See: Arrow Notation

Bifunctors

Bifunctors are a generalization of functors to include types parameterized by
two parameters and include two map functions for each parameter.
class Bifunctor p where
bimap :: (a -> b) -> (c -> d) -> p a c -> p b d
first :: (a -> b) -> p a c -> p b c
second :: (b -> c) -> p a b -> p a c

The bifunctor laws are a natural generalization of the usual functor. Namely
they respect identities and composition in the usual way:

92

https://downloads.haskell.org/~ghc/7.8.3/docs/html/users_guide/arrow-notation.html

bimap id id � id
first id � id
second id � id

bimap f g � first f . second g

The canonical example is for 2-tuples.
�: first (+1) (1,2)
(2,2)
�: second (+1) (1,2)
(1,3)
�: bimap (+1) (+1) (1,2)
(2,3)

�: first (+1) (Left 3)
Left 4
�: second (+1) (Left 3)
Left 3
�: second (+1) (Right 3)
Right 4

Polyvariadic Functions

One surprising application of typeclasses is the ability to construct functions
which take an arbitrary number of arguments by defining instances over function
types. The arguments may be of arbitrary type, but the resulting collected
arguments must either converted into a single type or unpacked into a sum
type.
{-# LANGUAGE FlexibleInstances #-}

class Arg a where
collect' :: [String] -> a

-- extract to IO
instance Arg (IO ()) where
collect' acc = mapM_ putStrLn acc

-- extract to [String]
instance Arg [String] where
collect' acc = acc

instance (Show a, Arg r) => Arg (a -> r) where
collect' acc = \x -> collect' (acc ++ [show x])

collect :: Arg t => t

93

collect = collect' []

example1 :: [String]
example1 = collect 'a' 2 3.0

example2 :: IO ()
example2 = collect () "foo" [1,2,3]

See: Polyvariadic functions

Error Handling

Control.Exception

The low-level (and most dangerous) way to handle errors is to use the throw
and catch functions which allow us to throw extensible exceptions in pure code
but catch the resulting exception within IO. Of specific note is that return value
of the throw inhabits all types. There’s no reason to use this for custom code
that doesn’t use low-level system operations.
throw :: Exception e => e -> a
catch :: Exception e => IO a -> (e -> IO a) -> IO a
try :: Exception e => IO a -> IO (Either e a)
evaluate :: a -> IO a

{-# LANGUAGE DeriveDataTypeable #-}

import Data.Typeable
import Control.Exception

data MyException = MyException
deriving (Show, Typeable)

instance Exception MyException

evil :: [Int]
evil = [throw MyException]

example1 :: Int
example1 = head evil

example2 :: Int
example2 = length evil

main :: IO ()
main = do

94

http://okmij.org/ftp/Haskell/polyvariadic.html

a <- try (evaluate example1) :: IO (Either MyException Int)
print a

b <- try (return example2) :: IO (Either MyException Int)
print b

Because a value will not be evaluated unless needed, if one desires to know
for sure that an exception is either caught or not it can be deeply forced into
head normal form before invoking catch. The strictCatch is not provided by
standard library but has a simple implementation in terms of deepseq.
strictCatch :: (NFData a, Exception e) => IO a -> (e -> IO a) -> IO a
strictCatch = catch . (toNF =<<)

Exceptions

The problem with the previous approach is having to rely on GHC’s asyn-
chronous exception handling inside of IO to handle basic operations. The
exceptions provides the same API as Control.Exception but loosens the
dependency on IO.
{-# LANGUAGE DeriveDataTypeable #-}

import Data.Typeable
import Control.Monad.Catch
import Control.Monad.Identity

data MyException = MyException
deriving (Show, Typeable)

instance Exception MyException

example :: MonadCatch m => Int -> Int -> m Int
example x y | y == 0 = throwM MyException

| otherwise = return $ x `div` y

pure :: MonadCatch m => m (Either MyException Int)
pure = do
a <- try (example 1 2)
b <- try (example 1 0)
return (a >> b)

See: exceptions

95

http://hackage.haskell.org/package/exceptions

ExceptT

As of mtl 2.2 or higher, the ErrorT class has been replaced by the ExceptT. At
transformers level.
newtype ExceptT e m a = ExceptT (m (Either e a))

runExceptT :: ExceptT e m a -> m (Either e a)
runExceptT (ExceptT m) = m

instance (Monad m) => Monad (ExceptT e m) where
return a = ExceptT $ return (Right a)
m >>= k = ExceptT $ do

a <- runExceptT m
case a of

Left e -> return (Left e)
Right x -> runExceptT (k x)

fail = ExceptT . fail

throwE :: (Monad m) => e -> ExceptT e m a
throwE = ExceptT . return . Left

catchE :: (Monad m) =>
ExceptT e m a -- ^ the inner computation
-> (e -> ExceptT e' m a) -- ^ a handler for exceptions in the inner

-- computation
-> ExceptT e' m a

m `catchE` h = ExceptT $ do
a <- runExceptT m
case a of

Left l -> runExceptT (h l)
Right r -> return (Right r)

Using mtl:
instance MonadTrans (ExceptT e) where

lift = ExceptT . liftM Right

class (Monad m) => MonadError e m | m -> e where
throwError :: e -> m a
catchError :: m a -> (e -> m a) -> m a

instance MonadError IOException IO where
throwError = ioError
catchError = catch

instance MonadError e (Either e) where

96

throwError = Left
Left l `catchError` h = h l
Right r `catchError` _ = Right r

See:
• Control.Monad.Except

spoon

Sometimes you’ll be forced to deal with seemingly pure functions that can throw
up at any point. There are many functions in the standard library like this, and
many more on Hackage. You’d like to be handle this logic purely as if it were
returning a proper Maybe a but to catch the logic you’d need to install a IO
handler inside IO to catch it. Spoon allows us to safely (and “purely”, although
it uses a referentially transparent invocation of unsafePerformIO) to catch these
exceptions and put them in Maybe where they belong.
The spoon function evaluates its argument to head normal form, while teaspoon
evaluates to weak head normal form.
import Control.Spoon

goBoom :: Int -> Int -> Int
goBoom x y = x `div` y

-- evaluate to normal form
test1 :: Maybe [Int]
test1 = spoon [1, 2, undefined]

-- evaluate to weak head normal form
test2 :: Maybe [Int]
test2 = teaspoon [1, 2, undefined]

main :: IO ()
main = do
maybe (putStrLn "Nothing") (print . length) test1
maybe (putStrLn "Nothing") (print . length) test2

See:
• Spoon

97

https://hackage.haskell.org/package/mtl-2.2.1/docs/Control-Monad-Except.html
https://hackage.haskell.org/package/spoon

Advanced Monads

Function Monad

If one writes Haskell long enough one might eventually encounter the curious
beast that is the ((->) r) monad instance. It generally tends to be non-intuitive
to work with, but is quite simple when one considers it as an unwrapped Reader
monad.
instance Functor ((->) r) where
fmap = (.)

instance Monad ((->) r) where
return = const
f >>= k = \r -> k (f r) r

This just uses a prefix form of the arrow type operator.
import Control.Monad

id' :: (->) a a
id' = id

const' :: (->) a ((->) b a)
const' = const

-- Monad m => a -> m a
fret :: a -> b -> a
fret = return

-- Monad m => m a -> (a -> m b) -> m b
fbind :: (r -> a) -> (a -> (r -> b)) -> (r -> b)
fbind f k = f >>= k

-- Monad m => m (m a) -> m a
fjoin :: (r -> (r -> a)) -> (r -> a)
fjoin = join

fid :: a -> a
fid = const >>= id

-- Functor f => (a -> b) -> f a -> f b
fcompose :: (a -> b) -> (r -> a) -> (r -> b)
fcompose = (.)

type Reader r = (->) r -- pseudocode

98

instance Monad (Reader r) where
return a = _ -> a
f >>= k = \r -> k (f r) r

ask' :: r -> r
ask' = id

asks' :: (r -> a) -> (r -> a)
asks' f = id . f

runReader' :: (r -> a) -> r -> a
runReader' = id

RWS Monad

The RWS monad combines the functionality of the three monads discussed
above, the Reader, Writer, and State. There is also a RWST transformer.
runReader :: Reader r a -> r -> a
runWriter :: Writer w a -> (a, w)
runState :: State s a -> s -> (a, s)

These three eval functions are now combined into the following functions:
runRWS :: RWS r w s a -> r -> s -> (a, s, w)
execRWS :: RWS r w s a -> r -> s -> (s, w)
evalRWS :: RWS r w s a -> r -> s -> (a, w)

import Control.Monad.RWS

type R = Int
type W = [Int]
type S = Int

computation :: RWS R W S ()
computation = do
e <- ask
a <- get
let b = a + e
put b
tell [b]

example = runRWS computation 2 3

The usual caveat about Writer laziness also applies to RWS.

99

Cont

runCont :: Cont r a -> (a -> r) -> r
callCC :: MonadCont m => ((a -> m b) -> m a) -> m a
cont :: ((a -> r) -> r) -> Cont r a

In continuation passing style, composite computations are built up from se-
quences of nested computations which are terminated by a final continuation
which yields the result of the full computation by passing a function into the
continuation chain.
add :: Int -> Int -> Int
add x y = x + y

add :: Int -> Int -> (Int -> r) -> r
add x y k = k (x + y)

import Control.Monad
import Control.Monad.Cont

add :: Int -> Int -> Cont k Int
add x y = return $ x + y

mult :: Int -> Int -> Cont k Int
mult x y = return $ x * y

contt :: ContT () IO ()
contt = do

k <- do
callCC $ \exit -> do
lift $ putStrLn "Entry"
exit $ _ -> do
putStrLn "Exit"

lift $ putStrLn "Inside"
lift $ k ()

callcc :: Cont String Integer
callcc = do
a <- return 1
b <- callCC (\k -> k 2)
return $ a+b

ex1 :: IO ()
ex1 = print $ runCont (f >>= g) id
where
f = add 1 2
g = mult 3

100

-- 9

ex2 :: IO ()
ex2 = print $ runCont callcc show
-- "3"

ex3 :: IO ()
ex3 = runContT contt print
-- Entry
-- Inside
-- Exit

main :: IO ()
main = do
ex1
ex2
ex3

newtype Cont r a = Cont { runCont :: ((a -> r) -> r) }

instance Monad (Cont r) where
return a = Cont $ \k -> k a
(Cont c) >>= f = Cont $ \k -> c (\a -> runCont (f a) k)

class (Monad m) => MonadCont m where
callCC :: ((a -> m b) -> m a) -> m a

instance MonadCont (Cont r) where
callCC f = Cont $ \k -> runCont (f (\a -> Cont $ _ -> k a)) k

• Wikibooks: Continuation Passing Style
• MonadCont Under the Hood

MonadPlus

Choice and failure.
class Monad m => MonadPlus m where

mzero :: m a
mplus :: m a -> m a -> m a

instance MonadPlus [] where
mzero = []
mplus = (++)

instance MonadPlus Maybe where
mzero = Nothing

101

http://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
https://wiki.haskell.org/MonadCont_under_the_hood

Nothing `mplus` ys = ys
xs `mplus` _ys = xs

MonadPlus forms a monoid with
mzero `mplus` a = a
a `mplus` mzero = a
(a `mplus` b) `mplus` c = a `mplus` (b `mplus` c)

when :: (Monad m) => Bool -> m () -> m ()
when p s = if p then s else return ()

guard :: MonadPlus m => Bool -> m ()
guard True = return ()
guard False = mzero

msum :: MonadPlus m => [m a] -> m a
msum = foldr mplus mzero

import Safe
import Control.Monad

list1 :: [(Int,Int)]
list1 = [(a,b) | a <- [1..25], b <- [1..25], a < b]

list2 :: [(Int,Int)]
list2 = do
a <- [1..25]
b <- [1..25]
guard (a < b)
return $ (a,b)

maybe1 :: String -> String -> Maybe Double
maybe1 a b = do
a' <- readMay a
b' <- readMay b
guard (b' /= 0.0)
return $ a'/b'

maybe2 :: Maybe Int
maybe2 = msum [Nothing, Nothing, Just 3, Just 4]

import Control.Monad

range :: MonadPlus m => [a] -> m a
range [] = mzero
range (x:xs) = range xs `mplus` return x

102

pyth :: Integer -> [(Integer,Integer,Integer)]
pyth n = do
x <- range [1..n]
y <- range [1..n]
z <- range [1..n]
if x*x + y*y == z*z then return (x,y,z) else mzero

main :: IO ()
main = print $ pyth 15
{-
[(12 , 9 , 15)
, (12 , 5 , 13)
, (9 , 12 , 15)
, (8 , 6 , 10)
, (6 , 8 , 10)
, (5 , 12 , 13)
, (4 , 3 , 5)
, (3 , 4 , 5)
]
-}

MonadFix

The fixed point of a monadic computation. mfix f executes the action f only
once, with the eventual output fed back as the input.
fix :: (a -> a) -> a
fix f = let x = f x in x

mfix :: (a -> m a) -> m a

class Monad m => MonadFix m where
mfix :: (a -> m a) -> m a

instance MonadFix Maybe where
mfix f = let a = f (unJust a) in a

where unJust (Just x) = x
unJust Nothing = error "mfix Maybe: Nothing"

The regular do-notation can also be extended with -XRecursiveDo to accom-
modate recursive monadic bindings.
{-# LANGUAGE RecursiveDo #-}

import Control.Applicative
import Control.Monad.Fix

103

stream1 :: Maybe [Int]
stream1 = do
rec xs <- Just (1:xs)
return (map negate xs)

stream2 :: Maybe [Int]
stream2 = mfix $ \xs -> do
xs' <- Just (1:xs)
return (map negate xs')

ST Monad

The ST monad models “threads” of stateful computations which can manipulate
mutable references but are restricted to only return pure values when evaluated
and are statically confined to the ST monad of a s thread.
runST :: (forall s. ST s a) -> a
newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

import Data.STRef
import Control.Monad
import Control.Monad.ST
import Control.Monad.State.Strict

example1 :: Int
example1 = runST $ do
x <- newSTRef 0

forM_ [1..1000] $ \j -> do
writeSTRef x j

readSTRef x

example2 :: Int
example2 = runST $ do
count <- newSTRef 0
replicateM_ (10^6) $ modifySTRef' count (+1)
readSTRef count

example3 :: Int
example3 = flip evalState 0 $ do
replicateM_ (10^6) $ modify' (+1)
get

104

modify' :: MonadState a m => (a -> a) -> m ()
modify' f = get >>= (\x -> put $! f x)

Using the ST monad we can create a class of efficient purely functional data
structures that use mutable references in a referentially transparent way.

Free Monads

Pure :: a -> Free f a
Free :: f (Free f a) -> Free f a

liftF :: (Functor f, MonadFree f m) => f a -> m a
retract :: Monad f => Free f a -> f a

Free monads are monads which instead of having a join operation that com-
bines computations, instead forms composite computations from application of
a functor.
join :: Monad m => m (m a) -> m a
wrap :: MonadFree f m => f (m a) -> m a

One of the best examples is the Partiality monad which models computations
which can diverge. Haskell allows unbounded recursion, but for example we
can create a free monad from the Maybe functor which can be used to fix the
call-depth of, for example the Ackermann function.
import Control.Monad.Fix
import Control.Monad.Free

type Partiality a = Free Maybe a

-- Non-termination.
never :: Partiality a
never = fix (Free . Just)

fromMaybe :: Maybe a -> Partiality a
fromMaybe (Just x) = Pure x
fromMaybe Nothing = Free Nothing

runPartiality :: Int -> Partiality a -> Maybe a
runPartiality 0 _ = Nothing
runPartiality _ (Pure a) = Just a
runPartiality _ (Free Nothing) = Nothing
runPartiality n (Free (Just a)) = runPartiality (n-1) a

ack :: Int -> Int -> Partiality Int
ack 0 n = Pure $ n + 1

105

https://en.wikipedia.org/wiki/Ackermann_function

ack m 0 = Free $ Just $ ack (m-1) 1
ack m n = Free $ Just $ ack m (n-1) >>= ack (m-1)

main :: IO ()
main = do
let diverge = never :: Partiality ()
print $ runPartiality 1000 diverge
print $ runPartiality 1000 (ack 3 4)
print $ runPartiality 5500 (ack 3 4)

The other common use for free monads is to build embedded domain-specific
languages to describe computations. We can model a subset of the IO monad by
building up a pure description of the computation inside of the IOFree monad
and then using the free monad to encode the translation to an effectful IO
computation.
{-# LANGUAGE DeriveFunctor #-}

import System.Exit
import Control.Monad.Free

data Interaction x
= Puts String x
| Gets (Char -> x)
| Exit
deriving Functor

type IOFree a = Free Interaction a

puts :: String -> IOFree ()
puts s = liftF $ Puts s ()

get :: IOFree Char
get = liftF $ Gets id

exit :: IOFree r
exit = liftF Exit

gets :: IOFree String
gets = do
c <- get
if c == '\n'
then return ""
else gets >>= \line -> return (c : line)

-- Collapse our IOFree DSL into IO monad actions.
interp :: IOFree a -> IO a

106

interp (Pure r) = return r
interp (Free x) = case x of
Puts s t -> putStrLn s >> interp t
Gets f -> getChar >>= interp . f
Exit -> exitSuccess

echo :: IOFree ()
echo = do
puts "Enter your name:"
str <- gets
puts str
if length str > 10
then puts "You have a long name."
else puts "You have a short name."

exit

main :: IO ()
main = interp echo

An implementation such as the one found in free might look like the following:
{-# LANGUAGE MultiParamTypeClasses #-}

import Control.Applicative

data Free f a
= Pure a
| Free (f (Free f a))

instance Functor f => Monad (Free f) where
return a = Pure a
Pure a >>= f = f a
Free f >>= g = Free (fmap (>>= g) f)

class Monad m => MonadFree f m where
wrap :: f (m a) -> m a

liftF :: (Functor f, MonadFree f m) => f a -> m a
liftF = wrap . fmap return

iter :: Functor f => (f a -> a) -> Free f a -> a
iter _ (Pure a) = a
iter phi (Free m) = phi (iter phi <$> m)

retract :: Monad f => Free f a -> f a
retract (Pure a) = return a
retract (Free as) = as >>= retract

107

http://hackage.haskell.org/package/free

See:
• Monads for Free!
• I/O is not a Monad

Indexed Monads

Indexed monads are a generalisation of monads that adds an additional type pa-
rameter to the class that carries information about the computation or structure
of the monadic implementation.
class IxMonad md where
return :: a -> md i i a
(>>=) :: md i m a -> (a -> md m o b) -> md i o b

The canonical use-case is a variant of the vanilla State which allows type-
changing on the state for intermediate steps inside of the monad. This indeed
turns out to be very useful for handling a class of problems involving resource
management since the extra index parameter gives us space to statically en-
force the sequence of monadic actions by allowing and restricting certain state
transitions on the index parameter at compile-time.
To make this more usable we’ll use the somewhat esoteric -XRebindableSyntax
allowing us to overload the do-notation and if-then-else syntax by providing
alternative definitions local to the module.
{-# LANGUAGE RebindableSyntax #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE NoMonomorphismRestriction #-}

import Data.IORef
import Data.Char
import Prelude hiding (fmap, (>>=), (>>), return)
import Control.Applicative

newtype IState i o a = IState { runIState :: i -> (a, o) }

evalIState :: IState i o a -> i -> a
evalIState st i = fst $ runIState st i

execIState :: IState i o a -> i -> o
execIState st i = snd $ runIState st i

ifThenElse :: Bool -> a -> a -> a
ifThenElse b i j = case b of
True -> i
False -> j

108

http://www.andres-loeh.de/Free.pdf
http://r6.ca/blog/20110520T220201Z.html

return :: a -> IState s s a
return a = IState $ \s -> (a, s)

fmap :: (a -> b) -> IState i o a -> IState i o b
fmap f v = IState $ \i -> let (a, o) = runIState v i

in (f a, o)

join :: IState i m (IState m o a) -> IState i o a
join v = IState $ \i -> let (w, m) = runIState v i

in runIState w m

(>>=) :: IState i m a -> (a -> IState m o b) -> IState i o b
v >>= f = IState $ \i -> let (a, m) = runIState v i

in runIState (f a) m

(>>) :: IState i m a -> IState m o b -> IState i o b
v >> w = v >>= _ -> w

get :: IState s s s
get = IState $ \s -> (s, s)

gets :: (a -> o) -> IState a o a
gets f = IState $ \s -> (s, f s)

put :: o -> IState i o ()
put o = IState $ _ -> ((), o)

modify :: (i -> o) -> IState i o ()
modify f = IState $ \i -> ((), f i)

data Locked = Locked
data Unlocked = Unlocked

type Stateful a = IState a Unlocked a

acquire :: IState i Locked ()
acquire = put Locked

-- Can only release the lock if it's held, try release the lock
-- that's not held is a now a type error.
release :: IState Locked Unlocked ()
release = put Unlocked

-- Statically forbids improper handling of resources.

109

lockExample :: Stateful a
lockExample = do
ptr <- get :: IState a a a
acquire :: IState a Locked ()
-- ...
release :: IState Locked Unlocked ()
return ptr

-- Couldn't match type `Locked' with `Unlocked'
-- In a stmt of a 'do' block: return ptr
failure1 :: Stateful a
failure1 = do
ptr <- get
acquire
return ptr -- didn't release

-- Couldn't match type `a' with `Locked'
-- In a stmt of a 'do' block: release
failure2 :: Stateful a
failure2 = do
ptr <- get
release -- didn't acquire
return ptr

-- Evaluate the resulting state, statically ensuring that the
-- lock is released when finished.
evalReleased :: IState i Unlocked a -> i -> a
evalReleased f st = evalIState f st

example :: IO (IORef Integer)
example = evalReleased <$> pure lockExample <*> newIORef 0

See: Fun with Indexed monads

lifted-base

The default prelude predates a lot of the work on monad transformers and as
such many of the common functions for handling errors and interacting with IO
are bound strictly to the IO monad and not to functions implementing stacks
on top of IO or ST. The lifted-base provides generic control operations such as
catch can be lifted from IO or any other base monad.

monad-base
Monad base provides an abstraction over liftIO and other functions to explic-
itly lift into a “privileged” layer of the transformer stack. It’s implemented a

110

http://www.cl.cam.ac.uk/~dao29/ixmonad/ixmonad-fita14.pdf

multiparamater typeclass with the “base” monad as the parameter b.
-- | Lift a computation from the base monad
class (Applicative b, Applicative m, Monad b, Monad m)

=> MonadBase b m | m -> b where
liftBase � b a -> m a

monad-control
Monad control builds on top of monad-base to extended lifting operation to
control operations like catch and bracket can be written generically in terms
of any transformer with a base layer supporting these operations. Generic op-
erations can then be expressed in terms of a MonadBaseControl and written
in terms of the combinator control which handles the bracket and automatic
handler lifting.
control :: MonadBaseControl b m => (RunInBase m b -> b (StM m a)) -> m a

For example the function catch provided by Control.Exception is normally
locked into IO.
catch :: Exception e => IO a -> (e -> IO a) -> IO a

By composing it in terms of control we can construct a generic version which
automatically lifts inside of any combination of the usual transformer stacks
that has MonadBaseControl instance.
catch
:: (MonadBaseControl IO m, Exception e)
=> m a -- ^ Computation
-> (e -> m a) -- ^ Handler
-> m a

catch a handler = control $ \runInIO ->
E.catch (runInIO a)

(\e -> runInIO $ handler e)

Quantification

This is an advanced section, and is not typically necessary to write Haskell.

Universal Quantification

Universal quantification the primary mechanism of encoding polymorphism in
Haskell. The essence of universal quantification is that we can express functions
which operate the same way for a set of types and whose function behavior is
entirely determined only by the behavior of all types in this span.

111

{-# LANGUAGE ExplicitForAll #-}

-- �a. [a]
example1 :: forall a. [a]
example1 = []

-- �a. [a]
example2 :: forall a. [a]
example2 = [undefined]

-- �a. �b. (a → b) → [a] → [b]
map' :: forall a. forall b. (a -> b) -> [a] -> [b]
map' f = foldr ((:) . f) []

-- �a. [a] → [a]
reverse' :: forall a. [a] -> [a]
reverse' = foldl (flip (:)) []

Normally quantifiers are omitted in type signatures since in Haskell’s vanilla
surface language it is unambiguous to assume to that free type variables are
universally quantified.

Free theorems

A universally quantified type-variable actually implies quite a few rather deep
properties about the implementation of a function that can be deduced from its
type signature. For instance the identity function in Haskell is guaranteed to
only have one implementation since the only information that the information
that can present in the body
id :: forall a. a -> a
id x = x

fmap :: Functor f => (a -> b) -> f a -> f b

The free theorem of fmap:
forall f g. fmap f . fmap g = fmap (f . g)

See: Theorems for Free

Type Systems

Hindley-Milner type system
The Hindley-Milner type system is historically important as one of the first
typed lambda calculi that admitted both polymorphism and a variety of infer-
ence techniques that could always decide principal types.

112

http://www-ps.iai.uni-bonn.de/cgi-bin/free-theorems-webui.cgi?

e : x
| �x:t.e -- value abstraction
| e1 e2 -- application
| let x = e1 in e2 -- let

t : t -> t -- function types
| a -- type variables

� : � a . t -- type scheme

In an implementation, the function generalize converts all type variables
within the type into polymorphic type variables yielding a type scheme. The
function instantiate maps a scheme to a type, but with any polymorphic
variables converted into unbound type variables.

Rank-N Types

System-F is the type system that underlies Haskell. System-F subsumes the
HM type system in the sense that every type expressible in HM can be ex-
pressed within System-F. System-F is sometimes referred to in texts as the
Girald-Reynolds polymorphic lambda calculus or second-order lambda calculus.
t : t -> t -- function types
| a -- type variables
| � a . t -- forall

e : x -- variables
| �(x:t).e -- value abstraction
| e1 e2 -- value application
| Λa.e -- type abstraction
| e_t -- type application

An example with equivalents of GHC Core in comments:
id : � t. t -> t
id = Λt. �x:t. x
-- id :: forall t. t -> t
-- id = \ (@ t) (x :: t) -> x

tr : � a. � b. a -> b -> a
tr = Λa. Λb. �x:a. �y:b. x
-- tr :: forall a b. a -> b -> a
-- tr = \ (@ a) (@ b) (x :: a) (y :: b) -> x

fl : � a. � b. a -> b -> b
fl = Λa. Λb. �x:a. �y:b. y
-- fl :: forall a b. a -> b -> b

113

-- fl = \ (@ a) (@ b) (x :: a) (y :: b) -> y

nil : � a. [a]
nil = Λa. Λb. �z:b. �f:(a -> b -> b). z
-- nil :: forall a. [a]
-- nil = \ (@ a) (@ b) (z :: b) (f :: a -> b -> b) -> z

cons : � a. a -> [a] -> [a]
cons = Λa. �x:a. �xs:(� b. b -> (a -> b -> b) -> b).

Λb. �z:b. �f : (a -> b -> b). f x (xs_b z f)
-- cons :: forall a. a
-- -> (forall b. (a -> b -> b) -> b) -> (forall b. (a -> b -> b) -> b)
-- cons = \ (@ a) (x :: a) (xs :: forall b. (a -> b -> b) -> b)
-- (@ b) (z :: b) (f :: a -> b -> b) -> f x (xs @ b z f)

Normally when Haskell’s typechecker infers a type signature it places all quanti-
fiers of type variables at the outermost position such that no quantifiers appear
within the body of the type expression, called the prenex restriction. This re-
stricts an entire class of type signatures that would otherwise be expressible
within System-F, but has the benefit of making inference much easier.
-XRankNTypes loosens the prenex restriction such that we may explicitly place
quantifiers within the body of the type. The bad news is that the general
problem of inference in this relaxed system is undecidable in general, so we’re
required to explicitly annotate functions which use RankNTypes or they are
otherwise inferred as rank 1 and may not typecheck at all.
{-# LANGUAGE RankNTypes #-}

-- Can't unify (Bool ~ Char)
rank1 :: forall a. (a -> a) -> (Bool, Char)
rank1 f = (f True, f 'a')

rank2 :: (forall a. a -> a) -> (Bool, Char)
rank2 f = (f True, f 'a')

auto :: (forall a. a -> a) -> (forall b. b -> b)
auto x = x

xauto :: forall a. (forall b. b -> b) -> a -> a
xauto f = f

Monomorphic Rank 0: t
Polymorphic Rank 1: forall a. a -> t
Polymorphic Rank 2: (forall a. a -> t) -> t
Polymorphic Rank 3: ((forall a. a -> t) -> t) -> t

114

Of important note is that the type variables bound by an explicit quantifier in
a higher ranked type may not escape their enclosing scope, the typechecker will
explicitly enforce this with by enforcing that variables bound inside of rank-n
types (called skolem constants) will not unify with free meta type variables
inferred by the inference engine.
{-# LANGUAGE RankNTypes #-}

escape :: (forall a. a -> a) -> Int
escape f = f 0

g x = escape (\a -> x)

In this example in order for the expression to be well typed, f would necessarily
have (Int -> Int) which implies that a ~ Int over the whole type, but since
a is bound under the quantifier it must not be unified with Int and so the
typechecker must fail with a skolem capture error.
Couldn't match expected type `a' with actual type `t'
`a' is a rigid type variable bound by a type expected by the context: a -> a
`t' is a rigid type variable bound by the inferred type of g :: t -> Int
In the expression: x In the first argument of `escape', namely `(\ a -> x)'
In the expression: escape (\ a -> x)

This can actually be used for our advantage to enforce several types of invariants
about scope and use of specific type variables. For example the ST monad uses
a second rank type to prevent the capture of references between ST monads
with separate state threads where the s type variable is bound within a rank-2
type and cannot escape, statically guaranteeing that the implementation details
of the ST internals can’t leak out and thus ensuring its referential transparency.

Existential Quantification

An existential type is a pair of a type and a term with a special set of packing
and unpacking semantics. The type of the value encoded in the existential is
known by the producer but not by the consumer of the existential value.
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE RankNTypes #-}

-- � t. (t, t → t, t → String)
data Box = forall a. Box a (a -> a) (a -> String)

boxa :: Box
boxa = Box 1 negate show

boxb :: Box
boxb = Box "foo" reverse show

115

apply :: Box -> String
apply (Box x f p) = p (f x)

-- � t. Show t => t
data SBox = forall a. Show a => SBox a

boxes :: [SBox]
boxes = [SBox (), SBox 2, SBox "foo"]

showBox :: SBox -> String
showBox (SBox a) = show a

main :: IO ()
main = mapM_ (putStrLn . showBox) boxes
-- ()
-- 2
-- "foo"

The existential over SBox gathers a collection of values defined purely in terms
of their Show interface and an opaque pointer, no other information is available
about the values and they can’t be accessed or unpacked in any other way.
Passing around existential types allows us to hide information from consumers
of data types and restrict the behavior that functions can use. Passing records
around with existential variables allows a type to be “bundled” with a fixed set
of functions that operate over its hidden internals.
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ExistentialQuantification #-}

-- a b are existentially bound type variables, m is a free type variable
data MonadI m = MonadI
{ _return :: forall a . a -> m a
, _bind :: forall a b . m a -> (a -> m b) -> m b
}

monadMaybe:: MonadI Maybe
monadMaybe = MonadI
{ _return = Just
, _bind = \m f -> case m of

Nothing -> Nothing
Just x -> f x

}

116

Impredicative Types

This is an advanced section, and is not typically necessary to write Haskell.
Although extremely brittle, GHC also has limited support for impredicative
polymorphism which allows instantiating type variable with a polymorphic type.
Implied is that this loosens the restriction that quantifiers must precede arrow
types and now they may be placed inside of type-constructors.
-- Can't unify (Int ~ Char)

revUni :: forall a. Maybe ([a] -> [a]) -> Maybe ([Int], [Char])
revUni (Just g) = Just (g [3], g "hello")
revUni Nothing = Nothing

{-# LANGUAGE ImpredicativeTypes #-}

-- Uses higher-ranked polymorphism.
f :: (forall a. [a] -> a) -> (Int, Char)
f get = (get [1,2], get ['a', 'b', 'c'])

-- Uses impredicative polymorphism.
g :: Maybe (forall a. [a] -> a) -> (Int, Char)
g Nothing = (0, '0')
g (Just get) = (get [1,2], get ['a','b','c'])

Use of this extension is very rare, and there is some consideration that
-XImpredicativeTypes is fundamentally broken. Although GHC is very
liberal about telling us to enable it when one accidentally makes a typo in a
type signature!
Some notable trivia, the ($) operator is wired into GHC in a very special way
as to allow impredicative instantiation of runST to be applied via ($) by special-
casing the ($) operator only when used for the ST monad. If this sounds like
an ugly hack it’s because it is, but a rather convenient hack.
For example if we define a function apply which should behave identically to
($) we’ll get an error about polymorphic instantiation even though they are
defined identically!
{-# LANGUAGE RankNTypes #-}

import Control.Monad.ST

f `apply` x = f x

foo :: (forall s. ST s a) -> a
foo st = runST $ st

117

bar :: (forall s. ST s a) -> a
bar st = runST `apply` st

Couldn't match expected type `forall s. ST s a'
with actual type `ST s0 a'

In the second argument of `apply', namely `st'
In the expression: runST `apply` st
In an equation for `bar': bar st = runST `apply` st

See:
• SPJ Notes on $

Scoped Type Variables

Normally the type variables used within the toplevel signature for a function are
only scoped to the type-signature and not the body of the function and its rigid
signatures over terms and let/where clauses. Enabling -XScopedTypeVariables
loosens this restriction allowing the type variables mentioned in the toplevel to
be scoped within the value-level body of a function and all signatures contained
therein.
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE ScopedTypeVariables #-}

poly :: forall a b c. a -> b -> c -> (a, a)
poly x y z = (f x y, f x z)
where
-- second argument is universally quantified from inference
-- f :: forall t0 t1. t0 -> t1 -> t0
f x' _ = x'

mono :: forall a b c. a -> b -> c -> (a, a)
mono x y z = (f x y, f x z)
where
-- b is not implictly universally quantified because it is in scope
f :: a -> b -> a
f x' _ = x'

example :: IO ()
example = do
x :: [Int] <- readLn
print x

118

https://www.haskell.org/pipermail/glasgow-haskell-users/2010-November/019431.html

GADTs

GADTs

Generalized Algebraic Data types (GADTs) are an extension to algebraic
datatypes that allow us to qualify the constructors to datatypes with type
equality constraints, allowing a class of types that are not expressible using
vanilla ADTs.
-XGADTs implicitly enables an alternative syntax for datatype declarations (
-XGADTSyntax) such that the following declarations are equivalent:
-- Vanilla
data List a
= Empty
| Cons a (List a)

-- GADTSyntax
data List a where
Empty :: List a
Cons :: a -> List a -> List a

For an example use consider the data type Term, we have a term in which we
Succ which takes a Term parameterized by a which span all types. Problems
arise between the clash whether (a ~ Bool) or (a ~ Int) when trying to write
the evaluator.
data Term a
= Lit a
| Succ (Term a)
| IsZero (Term a)

-- can't be well-typed :(
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero i) = eval i == 0

And we admit the construction of meaningless terms which forces more error
handling cases.
-- This is a valid type.
failure = Succ (Lit True)

Using a GADT we can express the type invariants for our language (i.e. only
type-safe expressions are representable). Pattern matching on this GADTs then
carries type equality constraints without the need for explicit tags.
{-# Language GADTs #-}

data Term a where

119

Lit :: a -> Term a
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a

eval :: Term a -> a
eval (Lit i) = i -- Term a
eval (Succ t) = 1 + eval t -- Term (a ~ Int)
eval (IsZero i) = eval i == 0 -- Term (a ~ Int)
eval (If b e1 e2) = if eval b then eval e1 else eval e2 -- Term (a ~ Bool)

example :: Int
example = eval (Succ (Succ (Lit 3)))

This time around:
-- This is rejected at compile-time.
failure = Succ (Lit True)

Explicit equality constraints (a ~ b) can be added to a function’s context. For
example the following expand out to the same types.
f :: a -> a -> (a, a)
f :: (a ~ b) => a -> b -> (a,b)

(Int ~ Int) => ...
(a ~ Int) => ...
(Int ~ a) => ...
(a ~ b) => ...
(Int ~ Bool) => ... -- Will not typecheck.

This is effectively the implementation detail of what GHC is doing behind the
scenes to implement GADTs (implicitly passing and threading equality terms
around). If we wanted we could do the same setup that GHC does just using
equality constraints and existential quantification. Indeed, the internal represen-
tation of GADTs is as regular algebraic datatypes that carry coercion evidence
as arguments.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ExistentialQuantification #-}

-- Using Constraints
data Exp a
= (a ~ Int) => LitInt a
| (a ~ Bool) => LitBool a
| forall b. (b ~ Bool) => If (Exp b) (Exp a) (Exp a)

-- Using GADTs
-- data Exp a where
-- LitInt :: Int -> Exp Int

120

-- LitBool :: Bool -> Exp Bool
-- If :: Exp Bool -> Exp a -> Exp a -> Exp a

eval :: Exp a -> a
eval e = case e of
LitInt i -> i
LitBool b -> b
If b tr fl -> if eval b then eval tr else eval fl

In the presence of GADTs inference becomes intractable in many cases, often
requiring an explicit annotation. For example f can either have T a -> [a] or
T a -> [Int] and neither is principal.
data T :: * -> * where
T1 :: Int -> T Int
T2 :: T a

f (T1 n) = [n]
f T2 = []

Kind Signatures

Haskell’s kind system (i.e. the “type of the types”) is a system consisting the
single kind * and an arrow kind ->.
� : *
| � -> �

Int :: *
Maybe :: * -> *
Either :: * -> * -> *

There are in fact some extensions to this system that will be covered later (see:
PolyKinds and Unboxed types in later sections) but most kinds in everyday
code are simply either stars or arrows.
With the KindSignatures extension enabled we can now annotate top level type
signatures with their explicit kinds, bypassing the normal kind inference proce-
dures.
{-# LANGUAGE KindSignatures #-}

id :: forall (a :: *). a -> a
id x = x

On top of default GADT declaration we can also constrain the parameters of
the GADT to specific kinds. For basic usage Haskell’s kind inference can deduce
this reasonably well, but combined with some other type system extensions that
extend the kind system this becomes essential.

121

{-# Language GADTs #-}
{-# LANGUAGE KindSignatures #-}

data Term a :: * where
Lit :: a -> Term a
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a

data Vec :: * -> * -> * where
Nil :: Vec n a
Cons :: a -> Vec n a -> Vec n a

data Fix :: (* -> *) -> * where
In :: f (Fix f) -> Fix f

Void

The Void type is the type with no inhabitants. It unifies only with itself.
Using a newtype wrapper we can create a type where recursion makes it impos-
sible to construct an inhabitant.
-- Void :: Void -> Void
newtype Void = Void Void

Or using -XEmptyDataDecls we can also construct the uninhabited type equiv-
alently as a data declaration with no constructors.
data Void

The only inhabitant of both of these types is a diverging term like (undefined).

Phantom Types

Phantom types are parameters that appear on the left hand side of a type
declaration but which are not constrained by the values of the types inhabitants.
They are effectively slots for us to encode additional information at the type-
level.
import Data.Void

data Foo tag a = Foo a

combine :: Num a => Foo tag a -> Foo tag a -> Foo tag a
combine (Foo a) (Foo b) = Foo (a+b)

-- All identical at the value level, but differ at the type level.

122

a :: Foo () Int
a = Foo 1

b :: Foo t Int
b = Foo 1

c :: Foo Void Int
c = Foo 1

-- () ~ ()
example1 :: Foo () Int
example1 = combine a a

-- t ~ ()
example2 :: Foo () Int
example2 = combine a b

-- t0 ~ t1
example3 :: Foo t Int
example3 = combine b b

-- Couldn't match type `t' with `Void'
example4 :: Foo t Int
example4 = combine b c

Notice the type variable tag does not appear in the right hand side of the
declaration. Using this allows us to express invariants at the type-level that
need not manifest at the value-level. We’re effectively programming by adding
extra information at the type-level.
Consider the case of using newtypes to statically distinguish between plaintext
and cryptotext.
newtype Plaintext = Plaintext Text
newtype Crytpotext = Cryptotext Text

encrypt :: Key -> Plaintext -> Cryptotext
decrypt :: Key -> Cryptotext -> Plaintext

Using phantom types we use an extra parameter.
import Data.Text

data Cryptotext
data Plaintext

data Msg a = Msg Text

123

encrypt :: Msg Plaintext -> Msg Cryptotext
encrypt = undefined

decrypt :: Msg Plaintext -> Msg Cryptotext
decrypt = undefined

Using -XEmptyDataDecls can be a powerful combination with phantom types
that contain no value inhabitants and are “anonymous types”.
{-# LANGUAGE EmptyDataDecls #-}

data Token a

See: Fun with Phantom Types

Typelevel Operations

This is an advanced section, and is not typically necessary to write Haskell.
With a richer language for datatypes we can express terms that witness the
relationship between terms in the constructors, for example we can now express
a term which expresses propositional equality between two types.
The type Eql a b is a proof that types a and b are equal, by pattern matching
on the single Refl constructor we introduce the equality constraint into the
body of the pattern match.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ExplicitForAll #-}

-- a � b
data Eql a b where
Refl :: Eql a a

-- Congruence
-- (f : A → B) {x y} → x � y → f x � f y
cong :: Eql a b -> Eql (f a) (f b)
cong Refl = Refl

-- Symmetry
-- {a b : A} → a � b → a � b
sym :: Eql a b -> Eql b a
sym Refl = Refl

-- Transitivity
-- {a b c : A} → a � b → b � c → a � c
trans :: Eql a b -> Eql b c -> Eql a c
trans Refl Refl = Refl

124

http://www.researchgate.net/publication/228707929_Fun_with_phantom_types/file/9c960525654760c169.pdf

-- Coerce one type to another given a proof of their equality.
-- {a b : A} → a � b → a → b
castWith :: Eql a b -> a -> b
castWith Refl = id

-- Trivial cases
a :: forall n. Eql n n
a = Refl

b :: forall. Eql () ()
b = Refl

As of GHC 7.8 these constructors and functions are included in the Prelude in
the Data.Type.Equality module.

Interpreters

The lambda calculus forms the theoretical and practical foundation for many
languages. At the heart of every calculus is three components:

• Var - A variable
• Lam - A lambda abstraction
• App - An application

Figure 1:

There are many different ways of modeling these constructions and data struc-
ture representations, but they all more or less contain these three elements.
For example, a lambda calculus that uses String names on lambda binders and
variables might be written like the following:
type Name = String

data Exp
= Var Name
| Lam Name Exp
| App Exp Exp

125

http://hackage.haskell.org/package/base-4.7.0.0/docs/Data-Type-Equality.html

A lambda expression in which all variables that appear in the body of the
expression are referenced in an outer lambda binder is said to be closed while
an expression with unbound free variables is open.

HOAS

Higher Order Abstract Syntax (HOAS) is a technique for implementing the
lambda calculus in a language where the binders of the lambda expression map
directly onto lambda binders of the host language (i.e. Haskell) to give us
substitution machinery in our custom language by exploiting Haskell’s imple-
mentation.
{-# LANGUAGE GADTs #-}

data Expr a where
Con :: a -> Expr a
Lam :: (Expr a -> Expr b) -> Expr (a -> b)
App :: Expr (a -> b) -> Expr a -> Expr b

i :: Expr (a -> a)
i = Lam (\x -> x)

k :: Expr (a -> b -> a)
k = Lam (\x -> Lam (\y -> x))

s :: Expr ((a -> b -> c) -> (a -> b) -> (a -> c))
s = Lam (\x -> Lam (\y -> Lam (\z -> App (App x z) (App y z))))

eval :: Expr a -> a
eval (Con v) = v
eval (Lam f) = \x -> eval (f (Con x))
eval (App e1 e2) = (eval e1) (eval e2)

skk :: Expr (a -> a)
skk = App (App s k) k

example :: Integer
example = eval skk 1
-- 1

Pretty printing HOAS terms can also be quite complicated since the body of
the function is under a Haskell lambda binder.

126

PHOAS

A slightly different form of HOAS called PHOAS uses lambda datatype param-
eterized over the binder type. In this form evaluation requires unpacking into a
separate Value type to wrap the lambda expression.
{-# LANGUAGE RankNTypes #-}

data ExprP a
= VarP a
| AppP (ExprP a) (ExprP a)
| LamP (a -> ExprP a)
| LitP Integer

data Value
= VLit Integer
| VFun (Value -> Value)

fromVFun :: Value -> (Value -> Value)
fromVFun val = case val of
VFun f -> f
_ -> error "not a function"

fromVLit :: Value -> Integer
fromVLit val = case val of
VLit n -> n
_ -> error "not a integer"

newtype Expr = Expr { unExpr :: forall a . ExprP a }

eval :: Expr -> Value
eval e = ev (unExpr e) where
ev (LamP f) = VFun(ev . f)
ev (VarP v) = v
ev (AppP e1 e2) = fromVFun (ev e1) (ev e2)
ev (LitP n) = VLit n

i :: ExprP a
i = LamP (\a -> VarP a)

k :: ExprP a
k = LamP (\x -> LamP (\y -> VarP x))

s :: ExprP a
s = LamP (\x -> LamP (\y -> LamP (\z -> AppP (AppP (VarP x) (VarP z)) (AppP (VarP y) (VarP z)))))

127

skk :: ExprP a
skk = AppP (AppP s k) k

example :: Integer
example = fromVLit $ eval $ Expr (AppP skk (LitP 3))

See:
• PHOAS
• Encoding Higher-Order Abstract Syntax with Parametric Polymorphism

Final Interpreters

Using typeclasses we can implement a final interpreter which models a set of
extensible terms using functions bound to typeclasses rather than data construc-
tors. Instances of the typeclass form interpreters over these terms.
For example we can write a small language that includes basic arithmetic, and
then retroactively extend our expression language with a multiplication operator
without changing the base. At the same time our interpreter logic remains
invariant under extension with new expressions.
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE NoMonomorphismRestriction #-}

class Expr repr where
lit :: Int -> repr
neg :: repr -> repr
add :: repr -> repr -> repr
mul :: repr -> repr -> repr

instance Expr Int where
lit n = n
neg a = -a
add a b = a + b
mul a b = a * b

instance Expr String where
lit n = show n
neg a = "(-" ++ a ++ ")"
add a b = "(" ++ a ++ " + " ++ b ++ ")"
mul a b = "(" ++ a ++ " * " ++ b ++ ")"

class BoolExpr repr where
eq :: repr -> repr -> repr

128

http://adam.chlipala.net/papers/PhoasICFP08/PhoasICFP08Talk.pdf
http://www.seas.upenn.edu/~sweirich/papers/itabox/icfp-published-version.pdf

tr :: repr
fl :: repr

instance BoolExpr Int where
eq a b = if a == b then tr else fl
tr = 1
fl = 0

instance BoolExpr String where
eq a b = "(" ++ a ++ " == " ++ b ++ ")"
tr = "true"
fl = "false"

eval :: Int -> Int
eval = id

render :: String -> String
render = id

expr :: (BoolExpr repr, Expr repr) => repr
expr = eq (add (lit 1) (lit 2)) (lit 3)

result :: Int
result = eval expr
-- 1

string :: String
string = render expr
-- "((1 + 2) == 3)"

Finally Tagless

Writing an evaluator for the lambda calculus can likewise also be modeled with
a final interpreter and a Identity functor.
import Prelude hiding (id)

class Expr rep where
lam :: (rep a -> rep b) -> rep (a -> b)
app :: rep (a -> b) -> (rep a -> rep b)
lit :: a -> rep a

newtype Interpret a = R { reify :: a }

instance Expr Interpret where

129

lam f = R $ reify . f . R
app f a = R $ reify f $ reify a
lit = R

eval :: Interpret a -> a
eval e = reify e

e1 :: Expr rep => rep Int
e1 = app (lam (\x -> x)) (lit 3)

e2 :: Expr rep => rep Int
e2 = app (lam (\x -> lit 4)) (lam $ \x -> lam $ \y -> y)

example1 :: Int
example1 = eval e1
-- 3

example2 :: Int
example2 = eval e2
-- 4

See: Typed Tagless Interpretations and Typed Compilation

Datatypes

The usual hand-wavy of describing algebraic datatypes is to indicate the how
natural correspondence between sum types, product types, and polynomial ex-
pressions arises.
data Void -- 0
data Unit = Unit -- 1
data Sum a b = Inl a | Inr b -- a + b
data Prod a b = Prod a b -- a * b
type (->) a b = a -> b -- b ^ a

Intuitively it follows the notion that the cardinality of set of inhabitants of a
type can always be given as a function of the number of its holes. A product
type admits a number of inhabitants as a function of the product (i.e. cardinality
of the Cartesian product), a sum type as the sum of its holes and a function
type as the exponential of the span of the domain and codomain.
-- 1 + A
data Maybe a = Nothing | Just a

Recursive types are correspond to infinite series of these terms.
-- pseudocode

130

http://okmij.org/ftp/tagless-final/

-- �X. 1 + X
data Nat a = Z | S Nat
Nat a = � a. 1 + a

= 1 + (1 + (1 + ...))

-- �X. 1 + A * X
data List a = Nil | Cons a (List a)
List a = � a. 1 + a * (List a)

= 1 + a + a^2 + a^3 + a^4 ...

-- �X. A + A*X*X
data Tree a f = Leaf a | Tree a f f
Tree a = � a. 1 + a * (List a)

= 1 + a^2 + a^4 + a^6 + a^8 ...

See: Species and Functors and Types, Oh My!

F-Algebras

This is an advanced section, and is not typically necessary to write Haskell.
The initial algebra approach differs from the final interpreter approach in that we
now represent our terms as algebraic datatypes and the interpreter implements
recursion and evaluation occurs through pattern matching.
type Algebra f a = f a -> a
type Coalgebra f a = a -> f a
newtype Fix f = Fix { unFix :: f (Fix f) }

cata :: Functor f => Algebra f a -> Fix f -> a
ana :: Functor f => Coalgebra f a -> a -> Fix f
hylo :: Functor f => Algebra f b -> Coalgebra f a -> a -> b

In Haskell a F-algebra is a functor f a together with a function f a -> a.
A coalgebra reverses the function. For a functor f we can form its recursive
unrolling using the recursive Fix newtype wrapper.
newtype Fix f = Fix { unFix :: f (Fix f) }

Fix :: f (Fix f) -> Fix f
unFix :: Fix f -> f (Fix f)

Fix f = f (f (f (f (f (f (...))))))

newtype T b a = T (a -> b)

Fix (T a)
Fix T -> a

131

http://www.cis.upenn.edu/~byorgey/papers/species-pearl.pdf

(Fix T -> a) -> a
(Fix T -> a) -> a -> a
...

In this form we can write down a generalized fold/unfold function that are
datatype generic and written purely in terms of the recursing under the functor.
cata :: Functor f => Algebra f a -> Fix f -> a
cata alg = alg . fmap (cata alg) . unFix

ana :: Functor f => Coalgebra f a -> a -> Fix f
ana coalg = Fix . fmap (ana coalg) . coalg

We call these functions catamorphisms and anamorphisms. Notice especially
that the types of these two functions simply reverse the direction of arrows.
Interpreted in another way they transform an algebra/coalgebra which defines
a flat structure-preserving mapping between Fix f f into a function which either
rolls or unrolls the fixpoint. What is particularly nice about this approach is
that the recursion is abstracted away inside the functor definition and we are
free to just implement the flat transformation logic!
For example a construction of the natural numbers in this form:
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}

type Algebra f a = f a -> a
type Coalgebra f a = a -> f a

newtype Fix f = Fix { unFix :: f (Fix f) }

-- catamorphism
cata :: Functor f => Algebra f a -> Fix f -> a
cata alg = alg . fmap (cata alg) . unFix

-- anamorphism
ana :: Functor f => Coalgebra f a -> a -> Fix f
ana coalg = Fix . fmap (ana coalg) . coalg

-- hylomorphism
hylo :: Functor f => Algebra f b -> Coalgebra f a -> a -> b
hylo f g = cata f . ana g

type Nat = Fix NatF
data NatF a = S a | Z deriving (Eq,Show)

132

instance Functor NatF where
fmap f Z = Z
fmap f (S x) = S (f x)

plus :: Nat -> Nat -> Nat
plus n = cata phi where
phi Z = n
phi (S m) = s m

times :: Nat -> Nat -> Nat
times n = cata phi where
phi Z = z
phi (S m) = plus n m

int :: Nat -> Int
int = cata phi where
phi Z = 0
phi (S f) = 1 + f

nat :: Integer -> Nat
nat = ana (psi Z S) where
psi f _ 0 = f
psi _ f n = f (n-1)

z :: Nat
z = Fix Z

s :: Nat -> Nat
s = Fix . S

type Str = Fix StrF
data StrF x = Cons Char x | Nil

instance Functor StrF where
fmap f (Cons a as) = Cons a (f as)
fmap f Nil = Nil

nil :: Str
nil = Fix Nil

cons :: Char -> Str -> Str
cons x xs = Fix (Cons x xs)

str :: Str -> String

133

str = cata phi where
phi Nil = []
phi (Cons x xs) = x : xs

str' :: String -> Str
str' = ana (psi Nil Cons) where
psi f _ [] = f
psi _ f (a:as) = f a as

map' :: (Char -> Char) -> Str -> Str
map' f = hylo g unFix
where
g Nil = Fix Nil
g (Cons a x) = Fix $ Cons (f a) x

type Tree a = Fix (TreeF a)
data TreeF a f = Leaf a | Tree a f f deriving (Show)

instance Functor (TreeF a) where
fmap f (Leaf a) = Leaf a
fmap f (Tree a b c) = Tree a (f b) (f c)

depth :: Tree a -> Int
depth = cata phi where
phi (Leaf _) = 0
phi (Tree _ l r) = 1 + max l r

example1 :: Int
example1 = int (plus (nat 125) (nat 25))
-- 150

Or for example an interpreter for a small expression language that depends on
a scoping dictionary.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}

import Control.Applicative
import qualified Data.Map as M

type Algebra f a = f a -> a
type Coalgebra f a = a -> f a

134

newtype Fix f = Fix { unFix :: f (Fix f) }

cata :: Functor f => Algebra f a -> Fix f -> a
cata alg = alg . fmap (cata alg) . unFix

ana :: Functor f => Coalgebra f a -> a -> Fix f
ana coalg = Fix . fmap (ana coalg) . coalg

hylo :: Functor f => Algebra f b -> Coalgebra f a -> a -> b
hylo f g = cata f . ana g

type Id = String
type Env = M.Map Id Int

type Expr = Fix ExprF
data ExprF a
= Lit Int
| Var Id
| Add a a
| Mul a a
deriving (Show, Eq, Ord, Functor)

deriving instance Eq (f (Fix f)) => Eq (Fix f)
deriving instance Ord (f (Fix f)) => Ord (Fix f)
deriving instance Show (f (Fix f)) => Show (Fix f)

eval :: M.Map Id Int -> Fix ExprF -> Maybe Int
eval env = cata phi where
phi ex = case ex of
Lit c -> pure c
Var i -> M.lookup i env
Add x y -> liftA2 (+) x y
Mul x y -> liftA2 (*) x y

expr :: Expr
expr = Fix (Mul n (Fix (Add x y)))
where
n = Fix (Lit 10)
x = Fix (Var "x")
y = Fix (Var "y")

env :: M.Map Id Int
env = M.fromList [("x", 1), ("y", 2)]

compose :: (f (Fix f) -> c) -> (a -> Fix f) -> a -> c

135

compose x y = x . unFix . y

example :: Maybe Int
example = eval env expr
-- Just 30

What’s especially nice about this approach is how naturally catamorphisms
compose into efficient composite transformations.
compose :: Functor f => (f (Fix f) -> c) -> (a -> Fix f) -> a -> c
compose f g = f . unFix . g

• Understanding F-Algebras

recursion-schemes

This is an advanced section, and is not typically necessary to write Haskell.
The code from the F-algebra examples above is implemented in an off-the-shelf
library called recursion-schemes.
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DeriveFunctor #-}

import Data.Functor.Foldable

type Var = String

data Exp
= Var Var
| App Exp Exp
| Lam [Var] Exp
deriving Show

data ExpF a
= VarF Var
| AppF a a
| LamF [Var] a
deriving Functor

type instance Base Exp = ExpF

instance Foldable Exp where
project (Var a) = VarF a
project (App a b) = AppF a b
project (Lam a b) = LamF a b

instance Unfoldable Exp where

136

https://www.fpcomplete.com/user/bartosz/understanding-algebras

embed (VarF a) = Var a
embed (AppF a b) = App a b
embed (LamF a b) = Lam a b

fvs :: Exp -> [Var]
fvs = cata phi
where phi (VarF a) = [a]

phi (AppF a b) = a ++ b
phi (LamF a b) = foldr (filter . (/=)) a b

An example of usage:
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeSynonymInstances #-}

import Data.Traversable
import Control.Monad hiding (forM_, mapM, sequence)
import Prelude hiding (mapM)
import qualified Data.Map as M

newtype Fix (f :: * -> *) = Fix { outF :: f (Fix f) }

-- Catamorphism
cata :: Functor f => (f a -> a) -> Fix f -> a
cata f = f . fmap (cata f) . outF

-- Monadic catamorphism
cataM :: (Traversable f, Monad m) => (f a -> m a) -> Fix f -> m a
cataM f = f <=< mapM (cataM f) . outF

data ExprF r
= EVar String
| EApp r r
| ELam r r
deriving (Show, Eq, Ord, Functor)

type Expr = Fix ExprF

instance Show (Fix ExprF) where
show (Fix f) = show f

instance Eq (Fix ExprF) where
Fix x == Fix y = x == y

instance Ord (Fix ExprF) where

137

compare (Fix x) (Fix y) = compare x y

mkApp :: Fix ExprF -> Fix ExprF -> Fix ExprF
mkApp x y = Fix (EApp x y)

mkVar :: String -> Fix ExprF
mkVar x = Fix (EVar x)

mkLam :: Fix ExprF -> Fix ExprF -> Fix ExprF
mkLam x y = Fix (ELam x y)

i :: Fix ExprF
i = mkLam (mkVar "x") (mkVar "x")

k :: Fix ExprF
k = mkLam (mkVar "x") $ mkLam (mkVar "y") $ (mkVar "x")

subst :: M.Map String (ExprF Expr) -> Expr -> Expr
subst env = cata alg where
alg (EVar x) | Just e <- M.lookup x env = Fix e
alg e = Fix e

See:
• recursion-schemes

Hint and Mueval

This is an advanced section, and is not typically necessary to write Haskell.
GHC itself can actually interpret arbitrary Haskell source on the fly by hooking
into the GHC’s bytecode interpreter (the same used for GHCi). The hint pack-
age allows us to parse, typecheck, and evaluate arbitrary strings into arbitrary
Haskell programs and evaluate them.
import Language.Haskell.Interpreter

foo :: Interpreter String
foo = eval "(\\x -> x) 1"

example :: IO (Either InterpreterError String)
example = runInterpreter foo

This is generally not a wise thing to build a library around, unless of course the
purpose of the program is itself to evaluate arbitrary Haskell code (something
like an online Haskell shell or the likes).

138

http://hackage.haskell.org/package/recursion-schemes

Both hint and mueval do effectively the same task, designed around slightly
different internals of the GHC Api.
See:

• hint
• mueval

Testing

Contrary to a lot of misinformation, unit testing in Haskell is quite common and
robust. Although generally speaking unit tests tend to be of less importance in
Haskell since the type system makes an enormous amount of invalid programs
completely inexpressible by construction. Unit tests tend to be written later in
the development lifecycle and generally tend to be about the core logic of the
program and not the intermediate plumbing.
A prominent school of thought on Haskell library design tends to favor con-
structing programs built around strong equation laws which guarantee strong
invariants about program behavior under composition. Many of the testing
tools are built around this style of design.

QuickCheck

Probably the most famous Haskell library, QuickCheck is a testing framework
for generating large random tests for arbitrary functions automatically based
on the types of their arguments.
quickCheck :: Testable prop => prop -> IO ()
(==>) :: Testable prop => Bool -> prop -> Property
forAll :: (Show a, Testable prop) => Gen a -> (a -> prop) -> Property
choose :: Random a => (a, a) -> Gen a

import Test.QuickCheck

qsort :: [Int] -> [Int]
qsort [] = []
qsort (x:xs) = qsort lhs ++ [x] ++ qsort rhs

where lhs = filter (< x) xs
rhs = filter (>= x) xs

prop_maximum :: [Int] -> Property
prop_maximum xs = not (null xs) ==>

last (qsort xs) == maximum xs

139

http://hackage.haskell.org/package/mueval
http://hackage.haskell.org/package/mueval

main :: IO ()
main = quickCheck prop_maximum

$ runhaskell qcheck.hs
*** Failed! Falsifiable (after 3 tests and 4 shrinks):
[0]
[1]

$ runhaskell qcheck.hs
+++ OK, passed 1000 tests.

The test data generator can be extended with custom types and refined with
predicates that restrict the domain of cases to test.
import Test.QuickCheck

data Color = Red | Green | Blue deriving Show

instance Arbitrary Color where
arbitrary = do
n <- choose (0,2) :: Gen Int
return $ case n of
0 -> Red
1 -> Green
2 -> Blue

example1 :: IO [Color]
example1 = sample' arbitrary
-- [Red,Green,Red,Blue,Red,Red,Red,Blue,Green,Red,Red]

See: QuickCheck: An Automatic Testing Tool for Haskell

SmallCheck

Like QuickCheck, SmallCheck is a property testing system but instead of pro-
ducing random arbitrary test data it instead enumerates a deterministic series
of test data to a fixed depth.
smallCheck :: Testable IO a => Depth -> a -> IO ()
list :: Depth -> Series Identity a -> [a]
sample' :: Gen a -> IO [a]

�: list 3 series :: [Int]
[0,1,-1,2,-2,3,-3]

�: list 3 series :: [Double]
[0.0,1.0,-1.0,2.0,0.5,-2.0,4.0,0.25,-0.5,-4.0,-0.25]

140

http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html

�: list 3 series :: [(Int, String)]
[(0,""),(1,""),(0,"a"),(-1,""),(0,"b"),(1,"a"),(2,""),(1,"b"),(-1,"a"),(-2,""),(-1,"b"),(2,"a"),(-2,"a"),(2,"b"),(-2,"b")]

It is useful to generate test cases over all possible inputs of a program up to
some depth.
import Test.SmallCheck

distrib :: Int -> Int -> Int -> Bool
distrib a b c = a * (b + c) == a * b + a * c

cauchy :: [Double] -> [Double] -> Bool
cauchy xs ys = (abs (dot xs ys))^2 <= (dot xs xs) * (dot ys ys)

failure :: [Double] -> [Double] -> Bool
failure xs ys = abs (dot xs ys) <= (dot xs xs) * (dot ys ys)

dot :: Num a => [a] -> [a] -> a
dot xs ys = sum (zipWith (*) xs ys)

main :: IO ()
main = do
putStrLn "Testing distributivity..."
smallCheck 25 distrib

putStrLn "Testing Cauchy-Schwarz..."
smallCheck 4 cauchy

putStrLn "Testing invalid Cauchy-Schwarz..."
smallCheck 4 failure

$ runhaskell smallcheck.hs
Testing distributivity...
Completed 132651 tests without failure.

Testing Cauchy-Schwarz...
Completed 27556 tests without failure.

Testing invalid Cauchy-Schwarz...
Failed test no. 349.
there exist [1.0] [0.5] such that
condition is false

Just like for QuickCheck we can implement series instances for our custom
datatypes. For example there is no default instance for Vector, so let’s imple-
ment one:

141

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

import Test.SmallCheck
import Test.SmallCheck.Series
import Control.Applicative

import qualified Data.Vector as V

dot :: Num a => V.Vector a -> V.Vector a -> a
dot xs ys = V.sum (V.zipWith (*) xs ys)

cauchy :: V.Vector Double -> V.Vector Double -> Bool
cauchy xs ys = (abs (dot xs ys))^2 <= (dot xs xs) * (dot ys ys)

instance (Serial m a, Monad m) => Serial m (V.Vector a) where
series = V.fromList <$> series

main :: IO ()
main = smallCheck 4 cauchy

SmallCheck can also use Generics to derive Serial instances, for example to
enumerate all trees of a certain depth we might use:
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics
import Test.SmallCheck.Series

data Tree a = Null | Fork (Tree a) a (Tree a)
deriving (Show, Generic)

instance Serial m a => Serial m (Tree a)

example :: [Tree ()]
example = list 3 series

main = print example

QuickSpec

Using the QuickCheck arbitrary machinery we can also rather remarkably enu-
merate a large number of combinations of functions to try and deduce algebraic
laws from trying out inputs for small cases.

142

Of course the fundamental limitation of this approach is that a function may
not exhibit any interesting properties for small cases or for simple function
compositions. So in general case this approach won’t work, but practically it
still quite useful.
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}

import Data.List
import Data.Typeable

import Test.QuickSpec hiding (lists, bools, arith)
import Test.QuickCheck

type Var k a = (Typeable a, Arbitrary a, CoArbitrary a, k a)

listCons :: forall a. Var Ord a => a -> Sig
listCons a = background
[
"[]" `fun0` ([] :: [a]),
":" `fun2` ((:) :: a -> [a] -> [a])

]

lists :: forall a. Var Ord a => a -> [Sig]
lists a =
[
-- Names to print arbitrary variables
funs',
funvars',
vars',

-- Ambient definitions
listCons a,

-- Expressions to deduce properties of
"sort" `fun1` (sort :: [a] -> [a]),
"map" `fun2` (map :: (a -> a) -> [a] -> [a]),
"id" `fun1` (id :: [a] -> [a]),
"reverse" `fun1` (reverse :: [a] -> [a]),
"minimum" `fun1` (minimum :: [a] -> a),
"length" `fun1` (length :: [a] -> Int),
"++" `fun2` ((++) :: [a] -> [a] -> [a])

]

where

143

funs' = funs (undefined :: a)
funvars' = vars ["f", "g", "h"] (undefined :: a -> a)
vars' = ["xs", "ys", "zs"] `vars` (undefined :: [a])

tvar :: A
tvar = undefined

main :: IO ()
main = quickSpec (lists tvar)

Running this we rather see it is able to deduce most of the laws for list functions.
$ runhaskell src/quickspec.hs
== API ==
-- functions --
map :: (A -> A) -> [A] -> [A]
minimum :: [A] -> A
(++) :: [A] -> [A] -> [A]
length :: [A] -> Int
sort, id, reverse :: [A] -> [A]

-- background functions --
id :: A -> A
(:) :: A -> [A] -> [A]
(.) :: (A -> A) -> (A -> A) -> A -> A
[] :: [A]

-- variables --
f, g, h :: A -> A
xs, ys, zs :: [A]

-- the following types are using non-standard equality --
A -> A

-- WARNING: there are no variables of the following types; consider adding some --
A

== Testing ==
Depth 1: 12 terms, 4 tests, 24 evaluations, 12 classes, 0 raw equations.
Depth 2: 80 terms, 500 tests, 18673 evaluations, 52 classes, 28 raw equations.
Depth 3: 1553 terms, 500 tests, 255056 evaluations, 1234 classes, 319 raw equations.
319 raw equations; 1234 terms in universe.

== Equations about map ==
1: map f [] == []
2: map id xs == xs

144

3: map (f.g) xs == map f (map g xs)

== Equations about minimum ==
4: minimum [] == undefined

== Equations about (++) ==
5: xs++[] == xs
6: []++xs == xs
7: (xs++ys)++zs == xs++(ys++zs)

== Equations about sort ==
8: sort [] == []
9: sort (sort xs) == sort xs

== Equations about id ==
10: id xs == xs

== Equations about reverse ==
11: reverse [] == []
12: reverse (reverse xs) == xs

== Equations about several functions ==
13: minimum (xs++ys) == minimum (ys++xs)
14: length (map f xs) == length xs
15: length (xs++ys) == length (ys++xs)
16: sort (xs++ys) == sort (ys++xs)
17: map f (reverse xs) == reverse (map f xs)
18: minimum (sort xs) == minimum xs
19: minimum (reverse xs) == minimum xs
20: minimum (xs++xs) == minimum xs
21: length (sort xs) == length xs
22: length (reverse xs) == length xs
23: sort (reverse xs) == sort xs
24: map f xs++map f ys == map f (xs++ys)
25: reverse xs++reverse ys == reverse (ys++xs)

Keep in mind the rather remarkable fact that this is all deduced automatically
from the types alone!

Criterion

Criterion is a statistically aware benchmarking tool.
whnf :: (a -> b) -> a -> Pure
nf :: NFData b => (a -> b) -> a -> Pure
nfIO :: NFData a => IO a -> IO ()

145

bench :: Benchmarkable b => String -> b -> Benchmark

import Criterion.Main
import Criterion.Config

-- Naive recursion for fibonacci numbers.
fib1 :: Int -> Int
fib1 0 = 0
fib1 1 = 1
fib1 n = fib1 (n-1) + fib1 (n-2)

-- Use the De Moivre closed form for fibonacci numbers.
fib2 :: Int -> Int
fib2 x = truncate $ (1 / sqrt 5) * (phi ^ x - psi ^ x)
where

phi = (1 + sqrt 5) / 2
psi = (1 - sqrt 5) / 2

suite :: [Benchmark]
suite = [

bgroup "naive" [
bench "fib 10" $ whnf fib1 5

, bench "fib 20" $ whnf fib1 10
],
bgroup "de moivre" [
bench "fib 10" $ whnf fib2 5

, bench "fib 20" $ whnf fib2 10
]

]

main :: IO ()
main = defaultMain suite

$ runhaskell criterion.hs
warming up
estimating clock resolution...
mean is 2.349801 us (320001 iterations)
found 1788 outliers among 319999 samples (0.6%)
1373 (0.4%) high severe

estimating cost of a clock call...
mean is 65.52118 ns (23 iterations)
found 1 outliers among 23 samples (4.3%)
1 (4.3%) high severe

benchmarking naive/fib 10
mean: 9.903067 us, lb 9.885143 us, ub 9.924404 us, ci 0.950
std dev: 100.4508 ns, lb 85.04638 ns, ub 123.1707 ns, ci 0.950

146

benchmarking naive/fib 20
mean: 120.7269 us, lb 120.5470 us, ub 120.9459 us, ci 0.950
std dev: 1.014556 us, lb 858.6037 ns, ub 1.296920 us, ci 0.950

benchmarking de moivre/fib 10
mean: 7.699219 us, lb 7.671107 us, ub 7.802116 us, ci 0.950
std dev: 247.3021 ns, lb 61.66586 ns, ub 572.1260 ns, ci 0.950
found 4 outliers among 100 samples (4.0%)
2 (2.0%) high mild
2 (2.0%) high severe

variance introduced by outliers: 27.726%
variance is moderately inflated by outliers

benchmarking de moivre/fib 20
mean: 8.082639 us, lb 8.018560 us, ub 8.350159 us, ci 0.950
std dev: 595.2161 ns, lb 77.46251 ns, ub 1.408784 us, ci 0.950
found 8 outliers among 100 samples (8.0%)
4 (4.0%) high mild
4 (4.0%) high severe

variance introduced by outliers: 67.628%
variance is severely inflated by outliers

Criterion can also generate a HTML page containing the benchmark results
plotted
$ ghc -O2 --make criterion.hs
$./criterion -o bench.html

Figure 2:

147

Tasty

Tasty combines all of the testing frameworks into a common API for forming
runnable batches of tests and collecting the results.
import Test.Tasty
import Test.Tasty.HUnit
import Test.Tasty.QuickCheck
import qualified Test.Tasty.SmallCheck as SC

arith :: Integer -> Integer -> Property
arith x y = (x > 0) && (y > 0) ==> (x+y)^2 > x^2 + y^2

negation :: Integer -> Bool
negation x = abs (x^2) >= x

suite :: TestTree
suite = testGroup "Test Suite" [

testGroup "Units"
[testCase "Equality" $ True @=? True
, testCase "Assertion" $ assert $ (length [1,2,3]) == 3
],

testGroup "QuickCheck tests"
[testProperty "Quickcheck test" arith
],

testGroup "SmallCheck tests"
[SC.testProperty "Negation" negation
]

]

main :: IO ()
main = defaultMain suite

$ runhaskell TestSuite.hs
Unit tests
Units
Equality: OK
Assertion: OK

QuickCheck tests
Quickcheck test: OK
+++ OK, passed 100 tests.

SmallCheck tests
Negation: OK
11 tests completed

148

silently

Often in the process of testing IO heavy code we’ll need to redirect stdout to
compare it some known quantity. The silently package allows us to capture
anything done to stdout across any library inside of IO block and return the
result to the test runner.
capture :: IO a -> IO (String, a)

import Test.Tasty
import Test.Tasty.HUnit
import System.IO.Silently

test :: Int -> IO ()
test n = print (n * n)

testCapture n = do
(stdout, result) <- capture (test n)
assert (stdout == show (n*n) ++ "\n")

suite :: TestTree
suite = testGroup "Test Suite" [

testGroup "Units"
[testCase "Equality" $ testCapture 10
]

]

main :: IO ()
main = defaultMain suite

Type Families

MultiParam Typeclasses

Resolution of vanilla Haskell 98 typeclasses proceeds via very simple context
reduction that minimizes interdependency between predicates, resolves super-
classes, and reduces the types to head normal form. For example:
(Eq [a], Ord [a]) => [a]
==> Ord a => [a]

If a single parameter typeclass expresses a property of a type (i.e. it’s in a
class or not in class) then a multiparameter typeclass expresses relationships
between types. For example if we wanted to express the relation a type can be
converted to another type we might use a class like:

149

{-# LANGUAGE MultiParamTypeClasses #-}

import Data.Char

class Convertible a b where
convert :: a -> b

instance Convertible Int Integer where
convert = toInteger

instance Convertible Int Char where
convert = chr

instance Convertible Char Int where
convert = ord

Of course now our instances for Convertible Int are not unique anymore, so
there no longer exists a nice procedure for determining the inferred type of b
from just a. To remedy this let’s add a functional dependency a -> b, which
tells GHC that an instance a uniquely determines the instance that b can be. So
we’ll see that our two instances relating Int to both Integer and Char conflict.
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}

import Data.Char

class Convertible a b | a -> b where
convert :: a -> b

instance Convertible Int Char where
convert = chr

instance Convertible Char Int where
convert = ord

Functional dependencies conflict between instance declarations:
instance Convertible Int Integer
instance Convertible Int Char

Now there’s a simpler procedure for determining instances uniquely and mul-
tiparameter typeclasses become more usable and inferable again. Effectively a
functional dependency | a -> b says that we can’t define multiple multipara-
mater typeclass instances with the same a but different b.
�: convert (42 :: Int)
'*'

150

�: convert '*'
42

Now let’s make things not so simple. Turning on UndecidableInstances
loosens the constraint on context reduction that can only allow constraints of
the class to become structural smaller than its head. As a result implicit com-
putation can now occur within in the type class instance search. Combined with
a type-level representation of Peano numbers we find that we can encode basic
arithmetic at the type-level.
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}

data Z
data S n

type Zero = Z
type One = S Zero
type Two = S One
type Three = S Two
type Four = S Three

zero :: Zero
zero = undefined

one :: One
one = undefined

two :: Two
two = undefined

three :: Three
three = undefined

four :: Four
four = undefined

class Eval a where
eval :: a -> Int

instance Eval Zero where
eval _ = 0

instance Eval n => Eval (S n) where

151

eval m = 1 + eval (prev m)

class Pred a b | a -> b where
prev :: a -> b

instance Pred Zero Zero where
prev = undefined

instance Pred (S n) n where
prev = undefined

class Add a b c | a b -> c where
add :: a -> b -> c

instance Add Zero a a where
add = undefined

instance Add a b c => Add (S a) b (S c) where
add = undefined

f :: Three
f = add one two

g :: S (S (S (S Z)))
g = add two two

h :: Int
h = eval (add three four)

If the typeclass contexts look similar to Prolog you’re not wrong, if one reads
the contexts qualifier (=>) backwards as turnstiles :- then it’s precisely the
same equations.
add(0, A, A).
add(s(A), B, s(C)) :- add(A, B, C).

pred(0, 0).
pred(S(A), A).

This is kind of abusing typeclasses and if used carelessly it can fail to terminate
or overflow at compile-time. UndecidableInstances shouldn’t be turned on
without careful forethought about what it implies.
<interactive>:1:1:

Context reduction stack overflow; size = 201

152

Type Families

Type families allows us to write functions in the type domain which take types
as arguments which can yield either types or values indexed on their arguments
which are evaluated at compile-time in during typechecking. Type families come
in two varieties: data families and type synonym families.

• type families are named function on types
• data families are type-indexed data types

First let’s look at type synonym families, there are two equivalent syntactic
ways of constructing them. Either as associated type families declared within a
typeclass or as standalone declarations at the toplevel. The following forms are
semantically equivalent, although the unassociated form is strictly more general:
-- (1) Unassociated form
type family Rep a
type instance Rep Int = Char
type instance Rep Char = Int

class Convertible a where
convert :: a -> Rep a

instance Convertible Int where
convert = chr

instance Convertible Char where
convert = ord

-- (2) Associated form
class Convertible a where
type Rep a
convert :: a -> Rep a

instance Convertible Int where
type Rep Int = Char
convert = chr

instance Convertible Char where
type Rep Char = Int
convert = ord

Using the same example we used for multiparameter + functional dependencies
illustration we see that there is a direct translation between the type family
approach and functional dependencies. These two approaches have the same
expressive power.

153

An associated type family can be queried using the :kind! command in GHCi.
�: :kind! Rep Int
Rep Int :: *
= Char
�: :kind! Rep Char
Rep Char :: *
= Int

Data families on the other hand allow us to create new type parameterized data
constructors. Normally we can only define typeclasses functions whose behavior
results in a uniform result which is purely a result of the typeclasses arguments.
With data families we can allow specialized behavior indexed on the type.
For example if we wanted to create more complicated vector structures (bit-
masked vectors, vectors of tuples, …) that exposed a uniform API but internally
handled the differences in their data layout we can use data families to accom-
plish this:
{-# LANGUAGE TypeFamilies #-}

import qualified Data.Vector.Unboxed as V

data family Array a
data instance Array Int = IArray (V.Vector Int)
data instance Array Bool = BArray (V.Vector Bool)
data instance Array (a,b) = PArray (Array a) (Array b)
data instance Array (Maybe a) = MArray (V.Vector Bool) (Array a)

class IArray a where
index :: Array a -> Int -> a

instance IArray Int where
index (IArray xs) i = xs V.! i

instance IArray Bool where
index (BArray xs) i = xs V.! i

-- Vector of pairs
instance (IArray a, IArray b) => IArray (a, b) where
index (PArray xs ys) i = (index xs i, index ys i)

-- Vector of missing values
instance (IArray a) => IArray (Maybe a) where
index (MArray bm xs) i =
case bm V.! i of
True -> Nothing
False -> Just $ index xs i

154

Injectivity

The type level functions defined by type-families are not necessarily injective, the
function may map two distinct input types to the same output type. This differs
from the behavior of type constructors (which are also type-level functions)
which are injective.
For example for the constructor Maybe, Maybe t1 = Maybe t2 implies that t1
= t2.
data Maybe a = Nothing | Just a
-- Maybe a ~ Maybe b implies a ~ b

type instance F Int = Bool
type instance F Char = Bool

-- F a ~ F b does not imply a ~ b, in general

Roles

This is an advanced section, and is not typically necessary to write Haskell.
Roles are a further level of specification for type variables parameters of
datatypes.

• nominal
• representational
• phantom

They were added to the language to address a rather nasty and long-standing
bug around the correspondence between a newtype and its runtime representa-
tion. The fundamental distinction that roles introduce is there are two notions
of type equality. Two types are nominally equal when they have the same name.
This is the usual equality in Haskell or Core. Two types are representationally
equal when they have the same representation. (If a type is higher-kinded, all
nominally equal instantiations lead to representationally equal types.)

• nominal - Two types are the same.
• representational - Two types have the same runtime representation.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

newtype Age = MkAge { unAge :: Int }

type family Inspect x
type instance Inspect Age = Int
type instance Inspect Int = Bool

155

class Boom a where
boom :: a -> Inspect a

instance Boom Int where
boom = (== 0)

deriving instance Boom Age

-- GHC 7.6.3 exhibits undefined behavior
failure = boom (MkAge 3)
-- -6341068275333450897

Roles are normally inferred automatically, but with the RoleAnnotations ex-
tension they can be manually annotated. Except in rare cases this should not
be necessary although it is helpful to know what is going on under the hood.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE RoleAnnotations #-}

data Nat = Zero | Suc Nat

type role Vec nominal representational
data Vec :: Nat -> * -> * where
Nil :: Vec Zero a
(:*) :: a -> Vec n a -> Vec (Suc n) a

type role App representational nominal
data App (f :: k -> *) (a :: k) = App (f a)

type role Mu nominal nominal
data Mu (f :: (k -> *) -> k -> *) (a :: k) = Roll (f (Mu f) a)

type role Proxy phantom
data Proxy (a :: k) = Proxy

See:
• Roles
• Roles: A New Feature of GHC

156

https://ghc.haskell.org/trac/ghc/wiki/Roles
http://typesandkinds.wordpress.com/2013/08/15/roles-a-new-feature-of-ghc/

Monotraversable

Using type families, mono-traversable generalizes the notion of Functor, Fold-
able, and Traversable to include both monomorphic and polymorphic types.
omap :: MonoFunctor mono => (Element mono -> Element mono) -> mono -> mono

otraverse :: (Applicative f, MonoTraversable mono)
=> (Element mono -> f (Element mono)) -> mono -> f mono

ofoldMap :: (Monoid m, MonoFoldable mono)
=> (Element mono -> m) -> mono -> m

ofoldl' :: MonoFoldable mono
=> (a -> Element mono -> a) -> a -> mono -> a

ofoldr :: MonoFoldable mono
=> (Element mono -> b -> b) -> b -> mono -> b

For example the text type normally does not admit any of these type-classes
since, but now we can write down the instances that model the interface of
Foldable and Traversable.
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE OverloadedStrings #-}

import Data.Text
import Data.Char
import Data.Monoid
import Data.MonoTraversable
import Control.Applicative

bs :: Text
bs = "Hello Haskell."

shift :: Text
shift = omap (chr . (+1) . ord) bs
-- "Ifmmp!Ibtlfmm/"

backwards :: [Char]
backwards = ofoldl' (flip (:)) "" bs
-- ".lleksaH olleH"

data MyMonoType = MNil | MCons Int MyMonoType deriving Show

type instance Element MyMonoType = Int

instance MonoFunctor MyMonoType where

157

omap f MNil = MNil
omap f (MCons x xs) = f x `MCons` omap f xs

instance MonoFoldable MyMonoType where
ofoldMap f = ofoldr (mappend . f) mempty
ofoldr = mfoldr
ofoldl' = mfoldl'
ofoldr1Ex f = ofoldr1Ex f . mtoList
ofoldl1Ex' f = ofoldl1Ex' f . mtoList

instance MonoTraversable MyMonoType where
omapM f xs = mapM f (mtoList xs) >>= return . mfromList
otraverse f = ofoldr acons (pure MNil)
where acons x ys = MCons <$> f x <*> ys

mtoList :: MyMonoType -> [Int]
mtoList (MNil) = []
mtoList (MCons x xs) = x : (mtoList xs)

mfromList :: [Int] -> MyMonoType
mfromList [] = MNil
mfromList (x:xs) = MCons x (mfromList xs)

mfoldr :: (Int -> a -> a) -> a -> MyMonoType -> a
mfoldr f z MNil = z
mfoldr f z (MCons x xs) = f x (mfoldr f z xs)

mfoldl' :: (a -> Int -> a) -> a -> MyMonoType -> a
mfoldl' f z MNil = z
mfoldl' f z (MCons x xs) = let z' = z `f` x

in seq z' $ mfoldl' f z' xs

ex1 :: Int
ex1 = mfoldl' (+) 0 (mfromList [1..25])

ex2 :: MyMonoType
ex2 = omap (+1) (mfromList [1..25])

See: From Semigroups to Monads

NonEmpty

Rather than having degenerate (and often partial) cases of many of the Prelude
functions to accommodate the null case of lists, it is sometimes preferable to
statically enforce empty lists from even being constructed as an inhabitant of a

158

http://fundeps.com/tables/FromSemigroupToMonads.pdf

type.
infixr 5 :|, <|
data NonEmpty a = a :| [a]

head :: NonEmpty a -> a
toList :: NonEmpty a -> [a]
fromList :: [a] -> NonEmpty a

head :: NonEmpty a -> a
head ~(a :| _) = a

import Data.List.NonEmpty
import Prelude hiding (head, tail, foldl1)
import Data.Foldable (foldl1)

a :: NonEmpty Integer
a = fromList [1,2,3]
-- 1 :| [2,3]

b :: NonEmpty Integer
b = 1 :| [2,3]
-- 1 :| [2,3]

c :: NonEmpty Integer
c = fromList []
-- *** Exception: NonEmpty.fromList: empty list

d :: Integer
d = foldl1 (+) $ fromList [1..100]
-- 5050

Overloaded Lists

In GHC 7.8 -XOverloadedLists can be used to avoid the extraneous fromList
and toList conversions.

Manual Proofs

This is an advanced section, and is not typically necessary to write Haskell.
One of most deep results in computer science, the Curry–Howard correspon-
dence, is the relation that logical propositions can be modeled by types and
instantiating those types constitute proofs of these propositions. Programs are
proofs and proofs are programs.

159

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence

Types Logic
A proposition
a : A proof
B(x) predicate
Void �
Unit �
A + B A � B
A × B A � B
A -> B A � B

In dependently typed languages we can exploit this result to its full extent, in
Haskell we don’t have the strength that dependent types provide but can still
prove trivial results. For example, now we can model a type level function for
addition and provide a small proof that zero is an additive identity.
P 0 [base step]
�n. P n → P (1+n) [inductive step]

�n. P(n)

Axiom 1: a + 0 = a
Axiom 2: a + suc b = suc (a + b)

0 + suc a
= suc (0 + a) [by Axiom 2]
= suc a [Induction hypothesis]
�

Translated into Haskell our axioms are simply type definitions and recursing
over the inductive datatype constitutes the inductive step of our proof.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE TypeOperators #-}

data Z
data S n

data SNat n where
Zero :: SNat Z
Succ :: SNat n -> SNat (S n)

data Eql a b where
Refl :: Eql a a

type family Add m n

160

type instance Add Z n = n
type instance Add (S m) n = S (Add m n)

add :: SNat n -> SNat m -> SNat (Add n m)
add Zero m = m
add (Succ n) m = Succ (add n m)

cong :: Eql a b -> Eql (f a) (f b)
cong Refl = Refl

-- �n. 0 + suc n = suc n
plus_suc :: forall n. SNat n

-> Eql (Add Z (S n)) (S n)
plus_suc Zero = Refl
plus_suc (Succ n) = cong (plus_suc n)

-- �n. 0 + n = n
plus_zero :: forall n. SNat n

-> Eql (Add Z n) n
plus_zero Zero = Refl
plus_zero (Succ n) = cong (plus_zero n)

Using the TypeOperators extension we can also use infix notation at the type-
level.
data a :=: b where
Refl :: a :=: a

cong :: a :=: b -> (f a) :=: (f b)
cong Refl = Refl

type family (n :: Nat) :+ (m :: Nat) :: Nat
type instance Zero :+ m = m
type instance (Succ n) :+ m = Succ (n :+ m)

plus_suc :: forall n m. SNat n -> SNat m -> (n :+ (S m)) :=: (S (n :+ m))
plus_suc Zero m = Refl
plus_suc (Succ n) m = cong (plus_suc n m)

Constraint Kinds

This is an advanced section, and is not typically necessary to write Haskell.
GHC’s implementation also exposes the predicates that bound quantifiers in
Haskell as types themselves, with the -XConstraintKinds extension enabled.
Using this extension we work with constraints as first class types.

161

Num :: * -> Constraint
Odd :: * -> Constraint

type T1 a = (Num a, Ord a)

The empty constraint set is indicated by () :: Constraint.
For a contrived example if we wanted to create a generic Sized class that carried
with it constraints on the elements of the container in question we could achieve
this quite simply using type families.
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ConstraintKinds #-}

import GHC.Exts (Constraint)
import Data.Hashable
import Data.HashSet

type family Con a :: Constraint
type instance Con [a] = (Ord a, Eq a)
type instance Con (HashSet a) = (Hashable a)

class Sized a where
gsize :: Con a => a -> Int

instance Sized [a] where
gsize = length

instance Sized (HashSet a) where
gsize = size

One use-case of this is to capture the typeclass dictionary constrained by a
function and reify it as a value.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE KindSignatures #-}

import GHC.Exts (Constraint)

data Dict :: Constraint -> * where
Dict :: (c) => Dict c

dShow :: Dict (Show a) -> a -> String
dShow Dict x = show x

dEqNum :: Dict (Eq a, Num a) -> a -> Bool
dEqNum Dict x = x == 0

162

fShow :: String
fShow = dShow Dict 10

fEqual :: Bool
fEqual = dEqNum Dict 0

TypeFamilyDependencies

Type families historically have not been injective, i.e. they are not guaranteed
to maps distinct elements of its arguments to the same element of its result.
The syntax is similar to the multiparmater typeclass functional dependencies
in that the resulting type is uniquely determined by a set of the type families
parameters.
{-# LANGUAGE XTypeFamilyDependencies #-}

type family F a b c = (result :: k) | result -> a b c
type instance F Int Char Bool = Bool
type instance F Char Bool Int = Int
type instance F Bool Int Char = Char

See:
• Injective type families for Haskell

Promotion

Higher Kinded Types

What are higher kinded types?
The kind system in Haskell is unique by contrast with most other languages in
that it allows datatypes to be constructed which take types and type constructor
to other types. Such a system is said to support higher kinded types.
All kind annotations in Haskell necessarily result in a kind * although any terms
to the left may be higher-kinded (* -> *).
The common example is the Monad which has kind * -> *. But we have also
seen this higher-kindedness in free monads.
data Free f a where
Pure :: a -> Free f a
Free :: f (Free f a) -> Free f a

163

http://ics.p.lodz.pl/~stolarek/_media/pl:research:stolarek_peyton-jones_eisenberg_injectivity_extended.pdf

data Cofree f a where
Cofree :: a -> f (Cofree f a) -> Cofree f a

Free :: (* -> *) -> * -> *
Cofree :: (* -> *) -> * -> *

For instance Cofree Maybe a for some monokinded type a models a non-empty
list with Maybe :: * -> *.
-- Cofree Maybe a is a non-empty list
testCofree :: Cofree Maybe Int
testCofree = (Cofree 1 (Just (Cofree 2 Nothing)))

Kind Polymorphism

This is an advanced section, knowledge of kind polymorphism is not typically
necessary to write Haskell.
The regular value level function which takes a function and applies it to an
argument is universally generalized over in the usual Hindley-Milner way.
app :: forall a b. (a -> b) -> a -> b
app f a = f a

But when we do the same thing at the type-level we see we lose information
about the polymorphism of the constructor applied.
-- TApp :: (* -> *) -> * -> *
data TApp f a = MkTApp (f a)

Turning on -XPolyKinds allows polymorphic variables at the kind level as well.
-- Default: (* -> *) -> * -> *
-- PolyKinds: (k -> *) -> k -> *
data TApp f a = MkTApp (f a)

-- Default: ((* -> *) -> (* -> *)) -> (* -> *)
-- PolyKinds: ((k -> *) -> (k -> *)) -> (k -> *)
data Mu f a = Roll (f (Mu f) a)

-- Default: * -> *
-- PolyKinds: k -> *
data Proxy a = Proxy

Using the polykinded Proxy type allows us to write down type class functions
over constructors of arbitrary kind arity.
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}

164

data Proxy a = Proxy
data Rep = Rep

class PolyClass a where
foo :: Proxy a -> Rep
foo = const Rep

-- () :: *
-- [] :: * -> *
-- Either :: * -> * -> *

instance PolyClass ()
instance PolyClass []
instance PolyClass Either

For example we can write down the polymorphic S K combinators at the type
level now.
{-# LANGUAGE PolyKinds #-}

newtype I (a :: *) = I a
newtype K (a :: *) (b :: k) = K a
newtype Flip (f :: k1 -> k2 -> *) (x :: k2) (y :: k1) = Flip (f y x)

unI :: I a -> a
unI (I x) = x

unK :: K a b -> a
unK (K x) = x

unFlip :: Flip f x y -> f y x
unFlip (Flip x) = x

Data Kinds

This is an advanced section, knowledge of kind data kinds is not typically nec-
essary to write Haskell.
The -XDataKinds extension allows us to use refer to constructors at the value
level and the type level. Consider a simple sum type:
data S a b = L a | R b

-- S :: * -> * -> *
-- L :: a -> S a b
-- R :: b -> S a b

165

With the extension enabled we see that our type constructors are now automat-
ically promoted so that L or R can be viewed as both a data constructor of the
type S or as the type L with kind S.
{-# LANGUAGE DataKinds #-}

data S a b = L a | R b

-- S :: * -> * -> *
-- L :: * -> S * *
-- R :: * -> S * *

Promoted data constructors can referred to in type signatures by prefixing them
with a single quote. Also of importance is that these promoted constructors are
not exported with a module by default, but type synonym instances can be
created for the ticked promoted types and exported directly.
data Foo = Bar | Baz
type Bar = 'Bar
type Baz = 'Baz

Combining this with type families we see we can write meaningful, meaningful
type-level functions by lifting types to the kind level.
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}

import Prelude hiding (Bool(..))

data Bool = True | False

type family Not (a :: Bool) :: Bool

type instance Not True = False
type instance Not False = True

false :: Not True ~ False => a
false = undefined

true :: Not False ~ True => a
true = undefined

-- Fails at compile time.
-- Couldn't match type 'False with 'True
invalid :: Not True ~ True => a
invalid = undefined

166

Size-Indexed Vectors

Using this new structure we can create a Vec type which is parameterized by its
length as well as its element type now that we have a kind language rich enough
to encode the successor type in the kind signature of the generalized algebraic
datatype.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}

data Nat = Z | S Nat deriving (Eq, Show)

type Zero = Z
type One = S Zero
type Two = S One
type Three = S Two
type Four = S Three
type Five = S Four

data Vec :: Nat -> * -> * where
Nil :: Vec Z a
Cons :: a -> Vec n a -> Vec (S n) a

instance Show a => Show (Vec n a) where
show Nil = "Nil"
show (Cons x xs) = "Cons " ++ show x ++ " (" ++ show xs ++ ")"

class FromList n where
fromList :: [a] -> Vec n a

instance FromList Z where
fromList [] = Nil

instance FromList n => FromList (S n) where
fromList (x:xs) = Cons x $ fromList xs

lengthVec :: Vec n a -> Nat
lengthVec Nil = Z
lengthVec (Cons x xs) = S (lengthVec xs)

zipVec :: Vec n a -> Vec n b -> Vec n (a,b)
zipVec Nil Nil = Nil

167

zipVec (Cons x xs) (Cons y ys) = Cons (x,y) (zipVec xs ys)

vec4 :: Vec Four Int
vec4 = fromList [0, 1, 2, 3]

vec5 :: Vec Five Int
vec5 = fromList [0, 1, 2, 3, 4]

example1 :: Nat
example1 = lengthVec vec4
-- S (S (S (S Z)))

example2 :: Vec Four (Int, Int)
example2 = zipVec vec4 vec4
-- Cons (0,0) (Cons (1,1) (Cons (2,2) (Cons (3,3) (Nil))))

So now if we try to zip two Vec types with the wrong shape then we get an error
at compile-time about the off-by-one error.
example2 = zipVec vec4 vec5
-- Couldn't match type 'S 'Z with 'Z
-- Expected type: Vec Four Int
-- Actual type: Vec Five Int

The same technique we can use to create a container which is statically indexed
by an empty or non-empty flag, such that if we try to take the head of an empty
list we’ll get a compile-time error, or stated equivalently we have an obligation
to prove to the compiler that the argument we hand to the head function is
non-empty.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}

data Size = Empty | NonEmpty

data List a b where
Nil :: List Empty a
Cons :: a -> List b a -> List NonEmpty a

head' :: List NonEmpty a -> a
head' (Cons x _) = x

example1 :: Int
example1 = head' (1 `Cons` (2 `Cons` Nil))

168

-- Cannot match type Empty with NonEmpty
example2 :: Int
example2 = head' Nil

Couldn't match type None with Many
Expected type: List NonEmpty Int
Actual type: List Empty Int

See:
• Giving Haskell a Promotion

Typelevel Numbers

GHC’s type literals can also be used in place of explicit Peano arithmetic.
GHC 7.6 is very conservative about performing reduction, GHC 7.8 is much less
so and will can solve many typelevel constraints involving natural numbers but
sometimes still needs a little coaxing.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeOperators #-}

import GHC.TypeLits

data Vec :: Nat -> * -> * where
Nil :: Vec 0 a
Cons :: a -> Vec n a -> Vec (1 + n) a

-- GHC 7.6 will not reduce
-- vec3 :: Vec (1 + (1 + (1 + 0))) Int

vec3 :: Vec 3 Int
vec3 = 0 `Cons` (1 `Cons` (2 `Cons` Nil))

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}

import GHC.TypeLits
import Data.Type.Equality

data Foo :: Nat -> * where

169

https://research.microsoft.com/en-us/people/dimitris/fc-kind-poly.pdf

Small :: (n <= 2) => Foo n
Big :: (3 <= n) => Foo n

Empty :: ((n == 0) ~ True) => Foo n
NonEmpty :: ((n == 0) ~ False) => Foo n

big :: Foo 10
big = Big

small :: Foo 2
small = Small

empty :: Foo 0
empty = Empty

nonempty :: Foo 3
nonempty = NonEmpty

See: Type-Level Literals

Typelevel Strings

Custom Errors

As of GHC 8.0 we have the capacity to provide custom type error using type
families. The messages themselves hook into GHC and expressed using the small
datatype found in GHC.TypeLits

data ErrorMessage where
Text :: Symbol -> ErrorMessage
ShowType :: t -> ErrorMessage

-- Put two messages next to each other
(:<>:) :: ErrorMessage -> ErrorMessage -> ErrorMessage

-- Put two messages on top of each other
(:$$:) :: ErrorMessage -> ErrorMessage -> ErrorMessage

If one of these expressions is found in the signature of an expression GHC reports
an error message of the form:
example.hs:1:1: error:

• My custom error message line 1.
• My custom error message line 2.
• In the expression: example
In an equation for ‘foo’: foo = ECoerce (EFloat 3) (EInt 4)

170

http://www.haskell.org/ghc/docs/7.8.2/html/users_guide/type-level-literals.html

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits

instance
-- Error Message
TypeError (Text "Equality is not defined for functions"
:$$:
(ShowType a :<>: Text " -> " :<>: ShowType b))

-- Instance head
=> Eq (a -> b) where (==) = undefined

-- Fail when we try to equate two functions
example = id == id

A less contrived example would be creating a type-safe embedded DSL that
enforces invariants about the semantics at the type-level. We’ve been able to
do this sort of thing using GADTs and type-families for a while but the error
reporting has been horrible. With 8.0 we can have type-families that emit useful
type errors that reflect what actually goes wrong and integrate this inside of
GHC.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits

type family Coerce a b where
Coerce Int Int = Int
Coerce Float Float = Float
Coerce Int Float = Float
Coerce Float Int = TypeError (Text "Cannot cast to smaller type")

data Expr a where
EInt :: Int -> Expr Int
EFloat :: Float -> Expr Float
ECoerce :: Expr b -> Expr c -> Expr (Coerce b c)

foo :: Expr Int
foo = ECoerce (EFloat 3) (EInt 4)

171

Type Equality

Continuing with the theme of building more elaborate proofs in Haskell, GHC
7.8 recently shipped with the Data.Type.Equality module which provides us
with an extended set of type-level operations for expressing the equality of types
as values, constraints, and promoted booleans.
(~) :: k -> k -> Constraint
(==) :: k -> k -> Bool
(<=) :: Nat -> Nat -> Constraint
(<=?) :: Nat -> Nat -> Bool
(+) :: Nat -> Nat -> Nat
(-) :: Nat -> Nat -> Nat
(*) :: Nat -> Nat -> Nat
(^) :: Nat -> Nat -> Nat

(:~:) :: k -> k -> *
Refl :: a1 :~: a1
sym :: (a :~: b) -> b :~: a
trans :: (a :~: b) -> (b :~: c) -> a :~: c
castWith :: (a :~: b) -> a -> b
gcastWith :: (a :~: b) -> (a ~ b => r) -> r

With this we have a much stronger language for writing restrictions that can
be checked at a compile-time, and a mechanism that will later allow us to write
more advanced proofs.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ConstraintKinds #-}

import GHC.TypeLits
import Data.Type.Equality

type Not a b = ((b == a) ~ False)

restrictUnit :: Not () a => a -> a
restrictUnit = id

restrictChar :: Not Char a => a -> a
restrictChar = id

Proxies

Using kind polymorphism with phantom types allows us to express the Proxy
type which is inhabited by a single constructor with no arguments but with a

172

polykinded phantom type variable which carries an arbitrary type.
{-# LANGUAGE PolyKinds #-}

-- | A concrete, poly-kinded proxy type
data Proxy t = Proxy

import Data.Proxy

a :: Proxy ()
a = Proxy

b :: Proxy 3
b = Proxy

c :: Proxy "symbol"
c = Proxy

d :: Proxy Maybe
d = Proxy

e :: Proxy (Maybe ())
e = Proxy

In cases where we’d normally pass around a undefined as a witness of a type-
class dictionary, we can instead pass a Proxy object which carries the phantom
type without the need for the bottom. Using scoped type variables we can then
operate with the phantom paramater and manipulate wherever is needed.
t1 :: a
t1 = (undefined :: a)

t2 :: Proxy a
t2 Proxy :: Proxy a

Promoted Syntax

We’ve seen constructors promoted using DataKinds, but just like at the value-
level GHC also allows us some syntactic sugar for list and tuples instead of
explicit cons’ing and pair’ing. This is enabled with the -XTypeOperators exten-
sion, which introduces list syntax and tuples of arbitrary arity at the type-level.
data HList :: [*] -> * where
HNil :: HList '[]
HCons :: a -> HList t -> HList (a ': t)

data Tuple :: (*,*) -> * where
Tuple :: a -> b -> Tuple '(a,b)

173

Using this we can construct all variety of composite type-level objects.
�: :kind 1
1 :: Nat

�: :kind "foo"
"foo" :: Symbol

�: :kind [1,2,3]
[1,2,3] :: [Nat]

�: :kind [Int, Bool, Char]
[Int, Bool, Char] :: [*]

�: :kind Just [Int, Bool, Char]
Just [Int, Bool, Char] :: Maybe [*]

�: :kind '("a", Int)
(,) Symbol *

�: :kind ['("a", Int), '("b", Bool)]
['("a", Int), '("b", Bool)] :: [(,) Symbol *]

Singleton Types

This is an advanced section, knowledge of singletons is not typically necessary
to write Haskell.
A singleton type is a type with a single value inhabitant. Singleton types can
be constructed in a variety of ways using GADTs or with data families.
data instance Sing (a :: Nat) where
SZ :: Sing 'Z
SS :: Sing n -> Sing ('S n)

data instance Sing (a :: Maybe k) where
SNothing :: Sing 'Nothing
SJust :: Sing x -> Sing ('Just x)

data instance Sing (a :: Bool) where
STrue :: Sing True
SFalse :: Sing False

Promoted Naturals

Value-level Type-level Models
SZ Sing ’Z 0

174

Value-level Type-level Models
SS SZ Sing (’S ’Z) 1
SS (SS SZ) Sing (’S (’S ’Z)) 2

Promoted Booleans

Value-level Type-level Models
STrue Sing ’False False
SFalse Sing ’True True

Promoted Maybe

Value-level Type-level Models
SJust a Sing (SJust ’a) Just a
SNothing Sing Nothing Nothing

Singleton types are an integral part of the small cottage industry of faking
dependent types in Haskell, i.e. constructing types with terms predicated upon
values. Singleton types are a way of “cheating” by modeling the map between
types and values as a structural property of the type.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}

import Data.Proxy
import GHC.Exts (Any)
import Prelude hiding (succ)

data Nat = Z | S Nat

-- kind-indexed data family
data family Sing (a :: k)

175

data instance Sing (a :: Nat) where
SZ :: Sing 'Z
SS :: Sing n -> Sing ('S n)

data instance Sing (a :: Maybe k) where
SNothing :: Sing 'Nothing
SJust :: Sing x -> Sing ('Just x)

data instance Sing (a :: Bool) where
STrue :: Sing True
SFalse :: Sing False

data Fin (n :: Nat) where
FZ :: Fin (S n)
FS :: Fin n -> Fin (S n)

data Vec a n where
Nil :: Vec a Z
Cons :: a -> Vec a n -> Vec a (S n)

class SingI (a :: k) where
sing :: Sing a

instance SingI Z where
sing = SZ

instance SingI n => SingI (S n) where
sing = SS sing

deriving instance Show Nat
deriving instance Show (SNat a)
deriving instance Show (SBool a)
deriving instance Show (Fin a)
deriving instance Show a => Show (Vec a n)

type family (m :: Nat) :+ (n :: Nat) :: Nat where
Z :+ n = n
S m :+ n = S (m :+ n)

type SNat (k :: Nat) = Sing k
type SBool (k :: Bool) = Sing k
type SMaybe (b :: a) (k :: Maybe a) = Sing k

size :: Vec a n -> SNat n
size Nil = SZ

176

size (Cons x xs) = SS (size xs)

forget :: SNat n -> Nat
forget SZ = Z
forget (SS n) = S (forget n)

natToInt :: Integral n => Nat -> n
natToInt Z = 0
natToInt (S n) = natToInt n + 1

intToNat :: (Integral a, Ord a) => a -> Nat
intToNat 0 = Z
intToNat n = S $ intToNat (n - 1)

sNatToInt :: Num n => SNat x -> n
sNatToInt SZ = 0
sNatToInt (SS n) = sNatToInt n + 1

index :: Fin n -> Vec a n -> a
index FZ (Cons x _) = x
index (FS n) (Cons _ xs) = index n xs

test1 :: Fin (S (S (S Z)))
test1 = FS (FS FZ)

test2 :: Int
test2 = index FZ (1 `Cons` (2 `Cons` Nil))

test3 :: Sing ('Just ('S ('S Z)))
test3 = SJust (SS (SS SZ))

test4 :: Sing ('S ('S Z))
test4 = SS (SS SZ)

-- polymorphic constructor SingI
test5 :: Sing ('S ('S Z))
test5 = sing

The builtin singleton types provided in GHC.TypeLits have the useful imple-
mentation that type-level values can be reflected to the value-level and back up
to the type-level, albeit under an existential.
someNatVal :: Integer -> Maybe SomeNat
someSymbolVal :: String -> SomeSymbol

natVal :: KnownNat n => proxy n -> Integer

177

symbolVal :: KnownSymbol n => proxy n -> String

{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}

import Data.Proxy
import GHC.TypeLits

a :: Integer
a = natVal (Proxy :: Proxy 1)
-- 1

b :: String
b = symbolVal (Proxy :: Proxy "foo")
-- "foo"

c :: Integer
c = natVal (Proxy :: Proxy (2 + 3))
-- 5

Closed Type Families

In the type families we’ve used so far (called open type families) there is no
notion of ordering of the equations involved in the type-level function. The
type family can be extended at any point in the code resolution simply proceeds
sequentially through the available definitions. Closed type-families allow an
alternative declaration that allows for a base case for the resolution allowing us
to actually write recursive functions over types.
For example consider if we wanted to write a function which counts the argu-
ments in the type of a function and reifies at the value-level.
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import Data.Proxy
import GHC.TypeLits

type family Count (f :: *) :: Nat where
Count (a -> b) = 1 + (Count b)
Count x = 1

type Fn1 = Int -> Int
type Fn2 = Int -> Int -> Int -> Int

178

fn1 :: Integer
fn1 = natVal (Proxy :: Proxy (Count Fn1))
-- 2

fn2 :: Integer
fn2 = natVal (Proxy :: Proxy (Count Fn2))
-- 4

The variety of functions we can now write down are rather remarkable, allowing
us to write meaningful logic at the type level.
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits
import Data.Proxy
import Data.Type.Equality

-- Type-level functions over type-level lists.

type family Reverse (xs :: [k]) :: [k] where
Reverse '[] = '[]
Reverse xs = Rev xs '[]

type family Rev (xs :: [k]) (ys :: [k]) :: [k] where
Rev '[] i = i
Rev (x ': xs) i = Rev xs (x ': i)

type family Length (as :: [k]) :: Nat where
Length '[] = 0
Length (x ': xs) = 1 + Length xs

type family If (p :: Bool) (a :: k) (b :: k) :: k where
If True a b = a
If False a b = b

type family Concat (as :: [k]) (bs :: [k]) :: [k] where
Concat a '[] = a
Concat '[] b = b
Concat (a ': as) bs = a ': Concat as bs

type family Map (f :: a -> b) (as :: [a]) :: [b] where

179

Map f '[] = '[]
Map f (x ': xs) = f x ': Map f xs

type family Sum (xs :: [Nat]) :: Nat where
Sum '[] = 0
Sum (x ': xs) = x + Sum xs

ex1 :: Reverse [1,2,3] ~ [3,2,1] => Proxy a
ex1 = Proxy

ex2 :: Length [1,2,3] ~ 3 => Proxy a
ex2 = Proxy

ex3 :: (Length [1,2,3]) ~ (Length (Reverse [1,2,3])) => Proxy a
ex3 = Proxy

-- Reflecting type level computations back to the value level.
ex4 :: Integer
ex4 = natVal (Proxy :: Proxy (Length (Concat [1,2,3] [4,5,6])))
-- 6

ex5 :: Integer
ex5 = natVal (Proxy :: Proxy (Sum [1,2,3]))
-- 6

-- Couldn't match type ‘2’ with ‘1’
ex6 :: Reverse [1,2,3] ~ [3,1,2] => Proxy a
ex6 = Proxy

The results of type family functions need not necessarily be kinded as (*) either.
For example using Nat or Constraint is permitted.
type family Elem (a :: k) (bs :: [k]) :: Constraint where
Elem a (a ': bs) = (() :: Constraint)
Elem a (b ': bs) = a `Elem` bs

type family Sum (ns :: [Nat]) :: Nat where
Sum '[] = 0
Sum (n ': ns) = n + Sum ns

Kind Indexed Type Families

This is an advanced section, and is not typically necessary to write Haskell.
Just as typeclasses are normally indexed on types, type families can also be
indexed on kinds with the kinds given as explicit kind signatures on type vari-
ables.

180

type family (a :: k) == (b :: k) :: Bool
type instance a == b = EqStar a b
type instance a == b = EqArrow a b
type instance a == b = EqBool a b

type family EqStar (a :: *) (b :: *) where
EqStar a a = True
EqStar a b = False

type family EqArrow (a :: k1 -> k2) (b :: k1 -> k2) where
EqArrow a a = True
EqArrow a b = False

type family EqBool a b where
EqBool True True = True
EqBool False False = True
EqBool a b = False

type family EqList a b where
EqList '[] '[] = True
EqList (h1 ': t1) (h2 ': t2) = (h1 == h2) && (t1 == t2)
EqList a b = False

type family a && b where
True && True = True
a && a = False

Promoted Symbols

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ConstraintKinds #-}

import GHC.TypeLits
import Data.Type.Equality

data Label (l :: Symbol) = Get

class Has a l b | a l -> b where
from :: a -> Label l -> b

181

data Point2D = Point2 Double Double deriving Show
data Point3D = Point3 Double Double Double deriving Show

instance Has Point2D "x" Double where
from (Point2 x _) _ = x

instance Has Point2D "y" Double where
from (Point2 _ y) _ = y

instance Has Point3D "x" Double where
from (Point3 x _ _) _ = x

instance Has Point3D "y" Double where
from (Point3 _ y _) _ = y

instance Has Point3D "z" Double where
from (Point3 _ _ z) _ = z

infixl 6 #

(#) :: a -> (a -> b) -> b
(#) = flip ($)

_x :: Has a "x" b => a -> b
_x pnt = from pnt (Get :: Label "x")

_y :: Has a "y" b => a -> b
_y pnt = from pnt (Get :: Label "y")

_z :: Has a "z" b => a -> b
_z pnt = from pnt (Get :: Label "z")

type Point a r = (Has a "x" r, Has a "y" r)

distance :: (Point a r, Point b r, Floating r) => a -> b -> r
distance p1 p2 = sqrt (d1^2 + d2^2)
where
d1 = (p1 # _x) + (p1 # _y)
d2 = (p2 # _x) + (p2 # _y)

main :: IO ()
main = do
print $ (Point2 10 20) # _x

182

-- Fails with: No instance for (Has Point2D "z" a0)
-- print $ (Point2 10 20) # _z

print $ (Point3 10 20 30) # _x
print $ (Point3 10 20 30) # _z

print $ distance (Point2 1 3) (Point2 2 7)
print $ distance (Point2 1 3) (Point3 2 7 4)
print $ distance (Point3 1 3 5) (Point3 2 7 3)

Since record is fundamentally no different from the tuple we can also do the
same kind of construction over record field names.
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE ConstraintKinds #-}

import GHC.TypeLits

newtype Field (n :: Symbol) v = Field { unField :: v }
deriving Show

data Person1 = Person1
{ _age :: Field "age" Int
, _name :: Field "name" String
}

data Person2 = Person2
{ _age' :: Field "age" Int
, _name' :: Field "name" String
, _lib' :: Field "lib" String
}

deriving instance Show Person1
deriving instance Show Person2

data Label (l :: Symbol) = Get

class Has a l b | a l -> b where

183

from :: a -> Label l -> b

instance Has Person1 "age" Int where
from (Person1 a _) _ = unField a

instance Has Person1 "name" String where
from (Person1 _ a) _ = unField a

instance Has Person2 "age" Int where
from (Person2 a _ _) _ = unField a

instance Has Person2 "name" String where
from (Person2 _ a _) _ = unField a

age :: Has a "age" b => a -> b
age pnt = from pnt (Get :: Label "age")

name :: Has a "name" b => a -> b
name pnt = from pnt (Get :: Label "name")

-- Parameterized constraint kind for "Simon-ness" of a record.
type Simon a = (Has a "name" String, Has a "age" Int)

spj :: Person1
spj = Person1 (Field 56) (Field "Simon Peyton Jones")

smarlow :: Person2
smarlow = Person2 (Field 38) (Field "Simon Marlow") (Field "rts")

catNames :: (Simon a, Simon b) => a -> b -> String
catNames a b = name a ++ name b

addAges :: (Simon a, Simon b) => a -> b -> Int
addAges a b = age a + age b

names :: String
names = name smarlow ++ "," ++ name spj
-- "Simon Marlow,Simon Peyton Jones"

ages :: Int
ages = age spj + age smarlow
-- 94

Notably this approach is mostly just all boilerplate class instantiation which

184

could be abstracted away using TemplateHaskell or a Generic deriving.

HLists

This is an advanced section, and is not typically necessary to write Haskell.
A heterogeneous list is a cons list whose type statically encodes the ordered
types of its values.
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE KindSignatures #-}

infixr 5 :::

data HList (ts :: [*]) where
Nil :: HList '[]
(:::) :: t -> HList ts -> HList (t ': ts)

-- Take the head of a non-empty list with the first value as Bool type.
headBool :: HList (Bool ': xs) -> Bool
headBool hlist = case hlist of
(a ::: _) -> a

hlength :: HList x -> Int
hlength Nil = 0
hlength (_ ::: b) = 1 + (hlength b)

tuple :: (Bool, (String, (Double, ())))
tuple = (True, ("foo", (3.14, ())))

hlist :: HList '[Bool, String , Double , ()]
hlist = True ::: "foo" ::: 3.14 ::: () ::: Nil

Of course this immediately begs the question of how to print such a list out to a
string in the presence of type-heterogeneity. In this case we can use type-families
combined with constraint kinds to apply the Show over the HLists parameters
to generate the aggregate constraint that all types in the HList are Showable,
and then derive the Show instance.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}

185

{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.Exts (Constraint)

infixr 5 :::

data HList (ts :: [*]) where
Nil :: HList '[]
(:::) :: t -> HList ts -> HList (t ': ts)

type family Map (f :: a -> b) (xs :: [a]) :: [b]
type instance Map f '[] = '[]
type instance Map f (x ': xs) = f x ': Map f xs

type family Constraints (cs :: [Constraint]) :: Constraint
type instance Constraints '[] = ()
type instance Constraints (c ': cs) = (c, Constraints cs)

type AllHave (c :: k -> Constraint) (xs :: [k]) = Constraints (Map c xs)

showHList :: AllHave Show xs => HList xs -> [String]
showHList Nil = []
showHList (x ::: xs) = (show x) : showHList xs

instance AllHave Show xs => Show (HList xs) where
show = show . showHList

example1 :: HList '[Bool, String , Double , ()]
example1 = True ::: "foo" ::: 3.14 ::: () ::: Nil
-- ["True","\"foo\"","3.14","()"]

Typelevel Dictionaries

Much of this discussion of promotion begs the question whether we can create
data structures at the type-level to store information at compile-time. For
example a type-level association list can be used to model a map between type-
level symbols and any other promotable types. Together with type-families we
can write down type-level traversal and lookup functions.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}

186

{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits
import Data.Proxy
import Data.Type.Equality

type family If (p :: Bool) (a :: k) (b :: k) :: k where
If True a b = a
If False a b = b

type family Lookup (k :: a) (ls :: [(a, b)]) :: Maybe b where
Lookup k '[] = 'Nothing
Lookup k ('(a, b) ': xs) = If (a == k) ('Just b) (Lookup k xs)

type M = [
'("a", 1)

, '("b", 2)
, '("c", 3)
, '("d", 4)
]

type K = "a"
type (!!) m (k :: Symbol) a = (Lookup k m) ~ Just a

value :: Integer
value = natVal (Proxy :: (M !! "a") a => Proxy a)

If we ask GHC to expand out the type signature we can view the explicit imple-
mentation of the type-level map lookup function.
(!!)
:: If

(GHC.TypeLits.EqSymbol "a" k)
('Just 1)
(If

(GHC.TypeLits.EqSymbol "b" k)
('Just 2)
(If

(GHC.TypeLits.EqSymbol "c" k)
('Just 3)
(If (GHC.TypeLits.EqSymbol "d" k) ('Just 4) 'Nothing)))

~ 'Just v =>
Proxy k -> Proxy v

187

Advanced Proofs

This is an advanced section, and is not typically necessary to write Haskell.
Now that we have the length-indexed vector let’s go write the reverse function,
how hard could it be?
So we go and write down something like this:
reverseNaive :: forall n a. Vec a n -> Vec a n
reverseNaive xs = go Nil xs -- Error: n + 0 != n
where
go :: Vec a m -> Vec a n -> Vec a (n :+ m)
go acc Nil = acc
go acc (Cons x xs) = go (Cons x acc) xs -- Error: n + succ m != succ (n + m)

Running this we find that GHC is unhappy about two lines in the code:
Couldn't match type ‘n’ with ‘n :+ 'Z’

Expected type: Vec a n
Actual type: Vec a (n :+ 'Z)

Could not deduce ((n1 :+ 'S m) ~ 'S (n1 :+ m))
Expected type: Vec a1 (k :+ m)
Actual type: Vec a1 (n1 :+ 'S m)

As we unfold elements out of the vector we’ll end up a doing a lot of type-level
arithmetic over indices as we combine the subparts of the vector backwards,
but as a consequence we find that GHC will run into some unification errors be-
cause it doesn’t know about basic arithmetic properties of the natural numbers.
Namely that forall n. n + 0 = 0 and forall n m. n + (1 + m) = 1 +
(n + m). Which of course it really shouldn’t be given that we’ve constructed a
system at the type-level which intuitively models arithmetic but GHC is just a
dumb compiler, it can’t automatically deduce the isomorphism between natural
numbers and Peano numbers.
So at each of these call sites we now have a proof obligation to construct proof
terms. Recall from our discussion of propositional equality from GADTs that
we actually have such machinery to construct this now.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ExplicitForAll #-}

import Data.Type.Equality

188

data Nat = Z | S Nat

data SNat n where
Zero :: SNat Z
Succ :: SNat n -> SNat (S n)

data Vec :: * -> Nat -> * where
Nil :: Vec a Z
Cons :: a -> Vec a n -> Vec a (S n)

instance Show a => Show (Vec a n) where
show Nil = "Nil"
show (Cons x xs) = "Cons " ++ show x ++ " (" ++ show xs ++ ")"

type family (m :: Nat) :+ (n :: Nat) :: Nat where
Z :+ n = n
S m :+ n = S (m :+ n)

-- (a ~ b) implies (f a ~ f b)
cong :: a :~: b -> f a :~: f b
cong Refl = Refl

-- (a ~ b) implies (f a) implies (f b)
subst :: a :~: b -> f a -> f b
subst Refl = id

plus_zero :: forall n. SNat n -> (n :+ Z) :~: n
plus_zero Zero = Refl
plus_zero (Succ n) = cong (plus_zero n)

plus_suc :: forall n m. SNat n -> SNat m -> (n :+ (S m)) :~: (S (n :+ m))
plus_suc Zero m = Refl
plus_suc (Succ n) m = cong (plus_suc n m)

size :: Vec a n -> SNat n
size Nil = Zero
size (Cons _ xs) = Succ $ size xs

reverse :: forall n a. Vec a n -> Vec a n
reverse xs = subst (plus_zero (size xs)) $ go Nil xs
where
go :: Vec a m -> Vec a k -> Vec a (k :+ m)
go acc Nil = acc
go acc (Cons x xs) = subst (plus_suc (size xs) (size acc)) $ go (Cons x acc) xs

append :: Vec a n -> Vec a m -> Vec a (n :+ m)

189

append (Cons x xs) ys = Cons x (append xs ys)
append Nil ys = ys

vec :: Vec Int (S (S (S Z)))
vec = 1 `Cons` (2 `Cons` (3 `Cons` Nil))

test :: Vec Int (S (S (S Z)))
test = Main.reverse vec

One might consider whether we could avoid using the singleton trick and just
use type-level natural numbers, and technically this approach should be feasible
although it seems that the natural number solver in GHC 7.8 can decide some
properties but not the ones needed to complete the natural number proofs for
the reverse functions.
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import Prelude hiding (Eq)
import GHC.TypeLits
import Data.Type.Equality

type Z = 0

type family S (n :: Nat) :: Nat where
S n = n + 1

-- Yes!
eq_zero :: Z :~: Z
eq_zero = Refl

-- Yes!
zero_plus_one :: (Z + 1) :~: (1 + Z)
zero_plus_one = Refl

-- Yes!
plus_zero :: forall n. (n + Z) :~: n
plus_zero = Refl

-- Yes!
plus_one :: forall n. (n + S Z) :~: S n
plus_one = Refl

-- No.

190

plus_suc :: forall n m. (n + (S m)) :~: (S (n + m))
plus_suc = Refl

Caveat should be that there might be a way to do this in GHC 7.6 that I’m not
aware of. In GHC 7.10 there are some planned changes to solver that should
be able to resolve these issues. In particular there are plans to allow pluggable
type system extensions that could outsource these kind of problems to third
party SMT solvers which can solve these kind of numeric relations and return
this information back to GHC’s typechecker.
As an aside this is a direct transliteration of the equivalent proof in Agda, which
is accomplished via the same method but without the song and dance to get
around the lack of dependent types.
module Vector where

infixr 10 _�_

data N : Set where
zero : N
suc : N → N

{-# BUILTIN NATURAL N #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}

infixl 6 _+_

+ : N → N → N
0 + n = n
suc m + n = suc (m + n)

data Vec (A : Set) : N → Set where
[] : Vec A 0
� : � {n} → A → Vec A n → Vec A (suc n)

++ : � {A n m} → Vec A n → Vec A m → Vec A (n + m)
[] ++ ys = ys
(x � xs) ++ ys = x � (xs ++ ys)

infix 4 _�_

data _�_ {A : Set} (x : A) : A → Set where
refl : x � x

subst : {A : Set} → (P : A → Set) → �{x y} → x � y → P x → P y
subst P refl p = p

191

cong : {A B : Set} (f : A → B) → {x y : A} → x � y → f x � f y
cong f refl = refl

vec : � {A} (k : N) → Set
vec {A} k = Vec A k

plus_zero : {n : N} → n + 0 � n
plus_zero {zero} = refl
plus_zero {suc n} = cong suc plus_zero

plus_suc : {n : N} → n + (suc 0) � suc n
plus_suc {zero} = refl
plus_suc {suc n} = cong suc (plus_suc {n})

reverse : � {A n} → Vec A n → Vec A n
reverse [] = []
reverse {A} {suc n} (x � xs) = subst vec (plus_suc {n}) (reverse xs ++ (x � []))

Liquid Haskell

This is an advanced section, knowledge of LiquidHaskell is not typically neces-
sary to write Haskell.
LiquidHaskell is an extension to GHC’s typesystem that adds the capactity for
refinement types using the annotation syntax. The type signatures of functions
can be checked by the external for richer type semantics than default GHC
provides, including non-exhaustive patterns and complex arithemtic properties
that require external SMT solvers to verify. For instance LiquidHaskell can
statically verify that a function that operates over a Maybe a is always given a
Just or that an arithmetic functions always yields an Int that is even positive
number.
To Install LiquidHaskell in Ubuntu add the following line to your /etc/sources.list:
deb http://ppa.launchpad.net/hvr/z3/ubuntu trusty main

And then install the external SMT solver.
$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys F6F88286
$ sudo apt-get install z3

Then clone the repo and build it using stack.
$ git clone --recursive git@github.com:ucsd-progsys/liquidhaskell.git
$ cd liquidhaskell
$ stack install

Ensure that $HOME/.local/bin is on your $PATH.

192

import Prelude hiding (mod, gcd)

{-@ mod :: a:Nat -> b:{v:Nat| 0 < v} -> {v:Nat | v < b} @-}
mod :: Int -> Int -> Int
mod a b
| a < b = a
| otherwise = mod (a - b) b

{-@ gcd :: a:Nat -> b:{v:Nat | v < a} -> Int @-}
gcd :: Int -> Int -> Int
gcd a 0 = a
gcd a b = gcd b (a `mod` b)

The module can be run through the solver using the liquid command line tool.
$ liquid example.hs
Done solving.

**** DONE: solve **

**** DONE: annotate ***

**** RESULT: SAFE **

For more extensive documentation and further use cases see the official docu-
mentation:

• Liquid Haskell Documentation

Generics

Haskell has several techniques for automatic generation of type classes for a
variety of tasks that consist largely of boilerplate code generation such as:

• Pretty Printing
• Equality
• Serialization
• Ordering
• Traversal

These are achieved through several tools and techniques outlined in the next
few sections:

• Typeable / Dynamic
• Scrap Your Boilerplate
• GHC.Generics

193

https://ucsd-progsys.github.io/liquidhaskell-tutorial/01-intro.html

• generics-sop

Typeable

The Typeable class be used to create runtime type information for arbitrary
types.
typeOf :: Typeable a => a -> TypeRep

{-# LANGUAGE DeriveDataTypeable #-}

import Data.Typeable

data Animal = Cat | Dog deriving Typeable
data Zoo a = Zoo [a] deriving Typeable

equal :: (Typeable a, Typeable b) => a -> b -> Bool
equal a b = typeOf a == typeOf b

example1 :: TypeRep
example1 = typeOf Cat
-- Animal

example2 :: TypeRep
example2 = typeOf (Zoo [Cat, Dog])
-- Zoo Animal

example3 :: TypeRep
example3 = typeOf ((1, 6.636e-34, "foo") :: (Int, Double, String))
-- (Int,Double,[Char])

example4 :: Bool
example4 = equal False ()
-- False

Using the Typeable instance allows us to write down a type safe cast function
which can safely use unsafeCast and provide a proof that the resulting type
matches the input.
cast :: (Typeable a, Typeable b) => a -> Maybe b
cast x
| typeOf x == typeOf ret = Just ret
| otherwise = Nothing
where
ret = unsafeCast x

Of historical note is that writing our own Typeable classes is currently possible of
GHC 7.6 but allows us to introduce dangerous behavior that can cause crashes,

194

and shouldn’t be done except by GHC itself. As of 7.8 GHC forbids hand-
written Typeable instances. As of 7.10 -XAutoDeriveDataTypeable is enabled
by default.
See: Typeable and Data in Haskell

Dynamic

Since we have a way of querying runtime type information we can use this
machinery to implement a Dynamic type. This allows us to box up any monotype
into a uniform type that can be passed to any function taking a Dynamic type
which can then unpack the underlying value in a type-safe way.
toDyn :: Typeable a => a -> Dynamic
fromDyn :: Typeable a => Dynamic -> a -> a
fromDynamic :: Typeable a => Dynamic -> Maybe a
cast :: (Typeable a, Typeable b) => a -> Maybe b

import Data.Dynamic
import Data.Maybe

dynamicBox :: Dynamic
dynamicBox = toDyn (6.62 :: Double)

example1 :: Maybe Int
example1 = fromDynamic dynamicBox
-- Nothing

example2 :: Maybe Double
example2 = fromDynamic dynamicBox
-- Just 6.62

example3 :: Int
example3 = fromDyn dynamicBox 0
-- 0

example4 :: Double
example4 = fromDyn dynamicBox 0.0
-- 6.62

In GHC 7.8 the Typeable class is poly-kinded so polymorphic functions can be
applied over functions and higher kinded types.
Use of Dynamic is somewhat rare, except in odd cases that have to deal with
foreign memory and FFI interfaces. Using it for business logic is considered a
code smell. Consider a more idiomatic solution.

195

http://chrisdone.com/posts/data-typeable

Data

Just as Typeable let’s create runtime type information where needed, the Data
class allows us to reflect information about the structure of datatypes to runtime
as needed.
class Typeable a => Data a where
gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)

-> (forall g. g -> c g)
-> a
-> c a

gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r)
-> Constr
-> c a

toConstr :: a -> Constr
dataTypeOf :: a -> DataType
gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r

The types for gfoldl and gunfold are a little intimidating (and depend on
Rank2Types), the best way to understand is to look at some examples. First
the most trivial case a simple sum type Animal would produce the following
code:
data Animal = Cat | Dog deriving Typeable

instance Data Animal where
gfoldl k z Cat = z Cat
gfoldl k z Dog = z Dog

gunfold k z c
= case constrIndex c of

1 -> z Cat
2 -> z Dog

toConstr Cat = cCat
toConstr Dog = cDog

dataTypeOf _ = tAnimal

tAnimal :: DataType
tAnimal = mkDataType "Main.Animal" [cCat, cDog]

cCat :: Constr
cCat = mkConstr tAnimal "Cat" [] Prefix

196

cDog :: Constr
cDog = mkConstr tAnimal "Dog" [] Prefix

For a type with non-empty containers we get something a little more interesting.
Consider the list type:
instance Data a => Data [a] where
gfoldl _ z [] = z []
gfoldl k z (x:xs) = z (:) `k` x `k` xs

toConstr [] = nilConstr
toConstr (_:_) = consConstr

gunfold k z c
= case constrIndex c of

1 -> z []
2 -> k (k (z (:)))

dataTypeOf _ = listDataType

nilConstr :: Constr
nilConstr = mkConstr listDataType "[]" [] Prefix

consConstr :: Constr
consConstr = mkConstr listDataType "(:)" [] Infix

listDataType :: DataType
listDataType = mkDataType "Prelude.[]" [nilConstr,consConstr]

Looking at gfoldl we see the Data has an implementation of a function for
us to walk an applicative over the elements of the constructor by applying a
function k over each element and applying z at the spine. For example look at
the instance for a 2-tuple as well:
instance (Data a, Data b) => Data (a,b) where
gfoldl k z (a,b) = z (,) `k` a `k` b

toConstr (_,_) = tuple2Constr

gunfold k z c
= case constrIndex c of
1 -> k (k (z (,)))

dataTypeOf _ = tuple2DataType

tuple2Constr :: Constr
tuple2Constr = mkConstr tuple2DataType "(,)" [] Infix

197

tuple2DataType :: DataType
tuple2DataType = mkDataType "Prelude.(,)" [tuple2Constr]

This is pretty neat, now within the same typeclass we have a generic way to
introspect any Data instance and write logic that depends on the structure and
types of its subterms. We can now write a function which allow us to traverse
an arbitrary instance Data and twiddle values based on pattern matching on the
runtime types. So let’s write down a function over which increments a Value
type for both for n-tuples and lists.
{-# LANGUAGE DeriveDataTypeable #-}

import Data.Data
import Control.Monad.Identity
import Control.Applicative

data Animal = Cat | Dog deriving (Data, Typeable)

newtype Val = Val Int deriving (Show, Data, Typeable)

incr :: Typeable a => a -> a
incr = maybe id id (cast f)
where f (Val x) = Val (x * 100)

over :: Data a => a -> a
over x = runIdentity $ gfoldl cont base (incr x)
where
cont k d = k <*> (pure $ over d)
base = pure

example1 :: Constr
example1 = toConstr Dog
-- Dog

example2 :: DataType
example2 = dataTypeOf Cat
-- DataType {tycon = "Main.Animal", datarep = AlgRep [Cat,Dog]}

example3 :: [Val]
example3 = over [Val 1, Val 2, Val 3]
-- [Val 100,Val 200,Val 300]

example4 :: (Val, Val, Val)
example4 = over (Val 1, Val 2, Val 3)
-- (Val 100,Val 200,Val 300)

198

We can also write generic operations to for instance count the number of param-
eters in a data type.
numHoles :: Data a => a -> Int
numHoles = gmapQl (+) 0 (const 1)

example1 :: Int
example1 = numHoles (1,2,3,4,5,6,7)
-- 7

example2 :: Int
example2 = numHoles (Just 3)
-- 1

Syb

Using the interface provided by the Data we can retrieve the information we
need to, at runtime, inspect the types of expressions and rewrite them, collect
terms, and find subterms matching specific predicates.
everywhere :: (forall a. Data a => a -> a) -> forall a. Data a => a -> a
everywhereM :: Monad m => GenericM m -> GenericM m
somewhere :: MonadPlus m => GenericM m -> GenericM m
listify :: Typeable r => (r -> Bool) -> GenericQ [r]
everything :: (r -> r -> r) -> GenericQ r -> GenericQ r

For example consider we have some custom collection of datatypes for which we
want to write generic transformations that transform numerical subexpressions
according to set of rewrite rules. We can use syb to write the transformation
rules quite succinctly.
{-# LANGUAGE DeriveDataTypeable #-}

import Data.Data
import Data.Typeable
import Data.Generics.Schemes
import Data.Generics.Aliases (mkT)

data MyTuple a = MyTuple a Float
deriving (Data, Typeable, Show)

exampleT :: Data a => MyTuple a -> MyTuple a
exampleT = everywhere (mkT go1) . everywhere (mkT go2)
where
go1 :: Int -> Int
go1 x = succ x

199

go2 :: Float -> Float
go2 x = succ x

findFloat :: Data x => x -> Maybe Float
findFloat = gfindtype

main :: IO ()
main = do
let term = MyTuple (MyTuple (1 :: Int) 2.0) 3.0
print (exampleT term)
print (gsize term)
print (findFloat term)
print (listify ((>0) :: (Int -> Bool)) term)

• Data.Generics.Schemes

Generic

The most modern method of doing generic programming uses type families to
achieve a better of deriving the structural properties of arbitrary type classes.
Generic implements a typeclass with an associated type Rep (Representation)
together with a pair of functions that form a 2-sided inverse (isomorphism) for
converting to and from the associated type and the derived type in question.
class Generic a where
type Rep a
from :: a -> Rep a
to :: Rep a -> a

class Datatype d where
datatypeName :: t d f a -> String
moduleName :: t d f a -> String

class Constructor c where
conName :: t c f a -> String

GHC.Generics defines a set of named types for modeling the various structural
properties of types in available in Haskell.
-- | Sums: encode choice between constructors
infixr 5 :+:
data (:+:) f g p = L1 (f p) | R1 (g p)

-- | Products: encode multiple arguments to constructors
infixr 6 :*:
data (:*:) f g p = f p :*: g p

200

https://hackage.haskell.org/package/syb-0.6/docs/Data-Generics-Schemes.html
https://www.haskell.org/ghc/docs/7.4.1/html/libraries/ghc-prim-0.2.0.0/GHC-Generics.html

-- | Tag for M1: datatype
data D
-- | Tag for M1: constructor
data C

-- | Constants, additional parameters and recursion of kind *
newtype K1 i c p = K1 { unK1 :: c }

-- | Meta-information (constructor names, etc.)
newtype M1 i c f p = M1 { unM1 :: f p }

-- | Type synonym for encoding meta-information for datatypes
type D1 = M1 D

-- | Type synonym for encoding meta-information for constructors
type C1 = M1 C

Using the deriving mechanics GHC can generate this Generic instance for us
mechanically, if we were to write it by hand for a simple type it might look like
this:
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}

import GHC.Generics

data Animal
= Dog
| Cat

instance Generic Animal where
type Rep Animal = D1 T_Animal ((C1 C_Dog U1) :+: (C1 C_Cat U1))

from Dog = M1 (L1 (M1 U1))
from Cat = M1 (R1 (M1 U1))

to (M1 (L1 (M1 U1))) = Dog
to (M1 (R1 (M1 U1))) = Cat

data T_Animal
data C_Dog
data C_Cat

instance Datatype T_Animal where
datatypeName _ = "Animal"
moduleName _ = "Main"

201

instance Constructor C_Dog where
conName _ = "Dog"

instance Constructor C_Cat where
conName _ = "Cat"

Use kind! in GHCi we can look at the type family Rep associated with a Generic
instance.
�: :kind! Rep Animal
Rep Animal :: * -> *
= M1 D T_Animal (M1 C C_Dog U1 :+: M1 C C_Cat U1)

�: :kind! Rep ()
Rep () :: * -> *
= M1 D GHC.Generics.D1() (M1 C GHC.Generics.C1_0() U1)

�: :kind! Rep [()]
Rep [()] :: * -> *
= M1

D
GHC.Generics.D1[]
(M1 C GHC.Generics.C1_0[] U1
:+: M1

C
GHC.Generics.C1_1[]
(M1 S NoSelector (K1 R ()) :*: M1 S NoSelector (K1 R [()])))

Now the clever bit, instead writing our generic function over the datatype we
instead write it over the Rep and then reify the result using from. Some for an
equivalent version of Haskell’s default Eq that instead uses generic deriving we
could write:
class GEq' f where
geq' :: f a -> f a -> Bool

instance GEq' U1 where
geq' _ _ = True

instance (GEq c) => GEq' (K1 i c) where
geq' (K1 a) (K1 b) = geq a b

instance (GEq' a) => GEq' (M1 i c a) where
geq' (M1 a) (M1 b) = geq' a b

-- Equality for sums.
instance (GEq' a, GEq' b) => GEq' (a :+: b) where
geq' (L1 a) (L1 b) = geq' a b

202

geq' (R1 a) (R1 b) = geq' a b
geq' _ _ = False

-- Equality for products.
instance (GEq' a, GEq' b) => GEq' (a :*: b) where
geq' (a1 :*: b1) (a2 :*: b2) = geq' a1 a2 && geq' b1 b2

Now to accommodate the two methods of writing classes (generic-deriving or
custom implementations) we can use DefaultSignatures extension to allow
the user to leave typeclass functions blank and defer to the Generic or to define
their own.
{-# LANGUAGE DefaultSignatures #-}

class GEq a where
geq :: a -> a -> Bool

default geq :: (Generic a, GEq' (Rep a)) => a -> a -> Bool
geq x y = geq' (from x) (from y)

Now anyone using our library need only derive Generic and create an empty
instance of our typeclass instance without writing any boilerplate for GEq.
And end to end example for deriving equality generics:
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE DefaultSignatures #-}

import GHC.Generics

-- Auxiliary class
class GEq' f where
geq' :: f a -> f a -> Bool

instance GEq' U1 where
geq' _ _ = True

instance (GEq c) => GEq' (K1 i c) where
geq' (K1 a) (K1 b) = geq a b

instance (GEq' a) => GEq' (M1 i c a) where
geq' (M1 a) (M1 b) = geq' a b

instance (GEq' a, GEq' b) => GEq' (a :+: b) where
geq' (L1 a) (L1 b) = geq' a b
geq' (R1 a) (R1 b) = geq' a b
geq' _ _ = False

203

instance (GEq' a, GEq' b) => GEq' (a :*: b) where
geq' (a1 :*: b1) (a2 :*: b2) = geq' a1 a2 && geq' b1 b2

--
class GEq a where
geq :: a -> a -> Bool
default geq :: (Generic a, GEq' (Rep a)) => a -> a -> Bool
geq x y = geq' (from x) (from y)

-- Base equalities
instance GEq Char where geq = (==)
instance GEq Int where geq = (==)
instance GEq Float where geq = (==)

-- Equalities derived from structure of (:+:) and (:*:)
instance GEq a => GEq (Maybe a)
instance (GEq a, GEq b) => GEq (a,b)

main :: IO ()
main = do
print $ geq 2 (3 :: Int)
print $ geq 'a' 'b'
print $ geq (Just 'a') (Just 'a')
print $ geq ('a','b') ('a', 'b')

See:
• Cooking Classes with Datatype Generic Programming
• Datatype-generic Programming in Haskell
• generic-deriving

Generic Deriving

Using Generics many common libraries provide a mechanisms to derive common
typeclass instances. Some real world examples:
The hashable library allows us to derive hashing functions.
{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics (Generic)
import Data.Hashable

data Color = Red | Green | Blue deriving (Generic, Show)

instance Hashable Color where

204

http://www.stephendiehl.com/posts/generics.html
http://www.andres-loeh.de/DGP-Intro.pdf
http://hackage.haskell.org/package/generic-deriving-1.6.3
http://hackage.haskell.org/package/hashable

example1 :: Int
example1 = hash Red
-- 839657738087498284

example2 :: Int
example2 = hashWithSalt 0xDEADBEEF Red
-- 62679985974121021

The cereal library allows us to automatically derive a binary representation.
{-# LANGUAGE DeriveGeneric #-}

import Data.Word
import Data.ByteString
import Data.Serialize

import GHC.Generics

data Val = A [Val] | B [(Val, Val)] | C
deriving (Generic, Show)

instance Serialize Val where

encoded :: ByteString
encoded = encode (A [B [(C, C)]])
-- "\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\SOH\SOH\NUL\NUL\NUL\NUL\NUL\NUL\NUL\SOH\STX\STX"

bytes :: [Word8]
bytes = unpack encoded
-- [0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,2,2]

decoded :: Either String Val
decoded = decode encoded

The aeson library allows us to derive JSON representations for JSON instances.
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}

import Data.Aeson
import GHC.Generics

data Point = Point { _x :: Double, _y :: Double }
deriving (Show, Generic)

instance FromJSON Point
instance ToJSON Point

205

http://hackage.haskell.org/package/cereal-0.4.0.1
http://hackage.haskell.org/package/aeson

example1 :: Maybe Point
example1 = decode "{\"x\":3.0,\"y\":-1.0}"

example2 = encode $ Point 123.4 20

See: A Generic Deriving Mechanism for Haskell

Higher Kinded Generics
Using the same interface GHC.Generics provides a seperate typeclass for higher-
kinded generics.
class Generic1 f where
type Rep1 f :: * -> *
from1 :: f a -> (Rep1 f) a
to1 :: (Rep1 f) a -> f a

So for instance Maybe has Rep1 of the form:
type instance Rep1 Maybe
= D1

GHC.Generics.D1Maybe
(C1 C1_0Maybe U1
:+: C1 C1_1Maybe (S1 NoSelector Par1))

Uniplate

Uniplate is a generics library for writing traversals and transformation for ar-
bitrary data structures. It is extremely useful for writing AST transformations
and rewriting systems.
plate :: from -> Type from to
(|*) :: Type (to -> from) to -> to -> Type from to
(|-) :: Type (item -> from) to -> item -> Type from to

descend :: Uniplate on => (on -> on) -> on -> on
transform :: Uniplate on => (on -> on) -> on -> on
rewrite :: Uniplate on => (on -> Maybe on) -> on -> on

The descend function will apply a function to each immediate descendant of an
expression and then combines them up into the parent expression.
The transform function will perform a single pass bottom-up transformation
of all terms in the expression.
The rewrite function will perform an exhaustive transformation of all terms in
the expression to fixed point, using Maybe to signify termination.

206

http://dreixel.net/research/pdf/gdmh.pdf

import Data.Generics.Uniplate.Direct

data Expr a
= Fls
| Tru
| Var a
| Not (Expr a)
| And (Expr a) (Expr a)
| Or (Expr a) (Expr a)
deriving (Show, Eq)

instance Uniplate (Expr a) where
uniplate (Not f) = plate Not |* f
uniplate (And f1 f2) = plate And |* f1 |* f2
uniplate (Or f1 f2) = plate Or |* f1 |* f2
uniplate x = plate x

simplify :: Expr a -> Expr a
simplify = transform simp
where
simp (Not (Not f)) = f
simp (Not Fls) = Tru
simp (Not Tru) = Fls
simp x = x

reduce :: Show a => Expr a -> Expr a
reduce = rewrite cnf
where
-- double negation
cnf (Not (Not p)) = Just p

-- de Morgan
cnf (Not (p `Or` q)) = Just $ (Not p) `And` (Not q)
cnf (Not (p `And` q)) = Just $ (Not p) `Or` (Not q)

-- distribute conjunctions
cnf (p `Or` (q `And` r)) = Just $ (p `Or` q) `And` (p `Or` r)
cnf ((p `And` q) `Or` r) = Just $ (p `Or` q) `And` (p `Or` r)
cnf _ = Nothing

example1 :: Expr String
example1 = simplify (Not (Not (Not (Not (Var "a")))))
-- Var "a"

example2 :: [String]

207

example2 = [a | Var a <- universe ex]
where
ex = Or (And (Var "a") (Var "b")) (Not (And (Var "c") (Var "d")))

-- ["a","b","c","d"]

example3 :: Expr String
example3 = reduce $ ((a `And` b) `Or` (c `And` d)) `Or` e
where
a = Var "a"
b = Var "b"
c = Var "c"
d = Var "d"
e = Var "e"

Alternatively Uniplate instances can be derived automatically from instances of
Data without the need to explicitly write a Uniplate instance. This approach
carries a slight amount of overhead over an explicit hand-written instance.
import Data.Data
import Data.Typeable
import Data.Generics.Uniplate.Data

data Expr a
= Fls
| Tru
| Lit a
| Not (Expr a)
| And (Expr a) (Expr a)
| Or (Expr a) (Expr a)
deriving (Data, Typeable, Show, Eq)

Biplate
Biplates generalize plates where the target type isn’t necessarily the same as
the source, it uses multiparameter typeclasses to indicate the type sub of the
sub-target. The Uniplate functions all have an equivalent generalized biplate
form.
descendBi :: Biplate from to => (to -> to) -> from -> from
transformBi :: Biplate from to => (to -> to) -> from -> from
rewriteBi :: Biplate from to => (to -> Maybe to) -> from -> from

descendBiM :: (Monad m, Biplate from to) => (to -> m to) -> from -> m from
transformBiM :: (Monad m, Biplate from to) => (to -> m to) -> from -> m from
rewriteBiM :: (Monad m, Biplate from to) => (to -> m (Maybe to)) -> from -> m from

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleContexts #-}

208

import Data.Generics.Uniplate.Direct

type Name = String

data Expr
= Var Name
| Lam Name Expr
| App Expr Expr
deriving Show

data Stmt
= Decl [Stmt]
| Let Name Expr
deriving Show

instance Uniplate Expr where
uniplate (Var x) = plate Var |- x
uniplate (App x y) = plate App |* x |* y
uniplate (Lam x y) = plate Lam |- x |* y

instance Biplate Expr Expr where
biplate = plateSelf

instance Uniplate Stmt where
uniplate (Decl x) = plate Decl ||* x
uniplate (Let x y) = plate Let |- x |- y

instance Biplate Stmt Stmt where
biplate = plateSelf

instance Biplate Stmt Expr where
biplate (Decl x) = plate Decl ||+ x
biplate (Let x y) = plate Let |- x |* y

rename :: Name -> Name -> Expr -> Expr
rename from to = rewrite f
where
f (Var a) | a == from = Just (Var to)
f (Lam a b) | a == from = Just (Lam to b)
f _ = Nothing

s, k, sk :: Expr
s = Lam "x" (Lam "y" (Lam "z" (App (App (Var "x") (Var "z")) (App (Var "y") (Var "z")))))
k = Lam "x" (Lam "y" (Var "x"))
sk = App s k

209

m :: Stmt
m = descendBi f $ Decl [(Let "s" s) , Let "k" k , Let "sk" sk]
where
f = rename "x" "a"
. rename "y" "b"
. rename "z" "c"

Mathematics

Numeric Tower

Haskell’s numeric tower is unusual and the source of some confusion for novices.
Haskell is one of the few languages to incorporate statically typed overloaded
literals without a mechanism for “coercions” often found in other languages.
To add to the confusion numerical literals in Haskell are desugared into a func-
tion from a numeric typeclass which yields a polymorphic value that can be
instantiated to any instance of the Num or Fractional typeclass at the call-site,
depending on the inferred type.
To use a blunt metaphor, we’re effectively placing an object in a hole and the size
and shape of the hole defines the object you place there. This is very different
than in other languages where a numeric literal like 2.718 is hard coded in the
compiler to be a specific type (double or something) and you cast the value at
runtime to be something smaller or larger as needed.
42 :: Num a => a
fromInteger (42 :: Integer)

2.71 :: Fractional a => a
fromRational (2.71 :: Rational)

The numeric typeclass hierarchy is defined as such:
class Num a
class (Num a, Ord a) => Real a
class Num a => Fractional a
class (Real a, Enum a) => Integral a
class (Real a, Fractional a) => RealFrac a
class Fractional a => Floating a
class (RealFrac a, Floating a) => RealFloat a

Conversions between concrete numeric types (from : left column, to : top row
) is accomplished with several generic functions.

Double Float Int Word Integer Rational
Double id fromRational truncate truncate truncate toRational

210

Double Float Int Word Integer Rational
Float fromRational id truncate truncate truncate toRational
Int fromIntegral fromIntegral id fromIntegral fromIntegral fromIntegral
Word fromIntegral fromIntegral fromIntegral id fromIntegral fromIntegral
Integer fromIntegral fromIntegral fromIntegral fromIntegral id fromIntegral
Rational fromRatoinal fromRational truncate truncate truncate id

Integer

The Integer type in GHC is implemented by the GMP (libgmp) arbitrary
precision arithmetic library. Unlike the Int type the size of Integer values is
bounded only by the available memory. Most notably libgmp is one of the few
libraries that compiled Haskell binaries are dynamically linked against.
An alternative library integer-simple can be linked in place of libgmp.
See: GHC, primops and exorcising GMP

Complex

Haskell supports arithmetic with complex numbers via a Complex datatype
from the Data.Complex module. The first argument is the real part, while the
second is the imaginary part. The type has a single parameter and inherits it’s
numerical typeclass components (Num, Fractional, Floating) from the type of
this paramater.
-- 1 + 2i
let complex = 1 :+ 2

data Complex a = a :+ a
mkPolar :: RealFloat a => a -> a -> Complex a

The Num instance for Complex is only defined if parameter of Complex is an
instance of RealFloat.
�: 0 :+ 1
0 :+ 1 :: Complex Integer

�: (0 :+ 1) + (1 :+ 0)
1.0 :+ 1.0 :: Complex Integer

�: exp (0 :+ 2 * pi)
1.0 :+ (-2.4492935982947064e-16) :: Complex Double

�: mkPolar 1 (2*pi)
1.0 :+ (-2.4492935982947064e-16) :: Complex Double

211

http://www.well-typed.com/blog/32/

Figure 3:

212

�: let f x n = (cos x :+ sin x)^n
�: let g x n = cos (n*x) :+ sin (n*x)

Scientific

Scientific provides arbitrary-precision numbers represented using scientific nota-
tion. The constructor takes an arbitrarily sized Integer argument for the digits
and an Int for the exponent. Alternatively the value can be parsed from a String
or coerced from either Double/Float.
scientific :: Integer -> Int -> Scientific
fromFloatDigits :: RealFloat a => a -> Scientific

import Data.Scientific

c, h, g, a, k :: Scientific
c = scientific 299792458 (0) -- Speed of light
h = scientific 662606957 (-42) -- Planck's constant
g = scientific 667384 (-16) -- Gravitational constant
a = scientific 729735257 (-11) -- Fine structure constant
k = scientific 268545200 (-9) -- Khinchin Constant

tau :: Scientific
tau = fromFloatDigits (2*pi)

maxDouble64 :: Double
maxDouble64 = read "1.7976931348623159e308"
-- Infinity

maxScientific :: Scientific
maxScientific = read "1.7976931348623159e308"
-- 1.7976931348623159e308

Statistics

import Data.Vector
import Statistics.Sample

import Statistics.Distribution.Normal
import Statistics.Distribution.Poisson
import qualified Statistics.Distribution as S

s1 :: Vector Double
s1 = fromList [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

213

s2 :: PoissonDistribution
s2 = poisson 2.5

s3 :: NormalDistribution
s3 = normalDistr mean stdDev
where
mean = 1
stdDev = 1

descriptive = do
print $ range s1
-- 9.0
print $ mean s1
-- 5.5
print $ stdDev s1
-- 3.0276503540974917
print $ variance s1
-- 8.25
print $ harmonicMean s1
-- 3.414171521474055
print $ geometricMean s1
-- 4.5287286881167645

discrete = do
print $ S.cumulative s2 0
-- 8.208499862389884e-2
print $ S.mean s2
-- 2.5
print $ S.variance s2
-- 2.5
print $ S.stdDev s2
-- 1.5811388300841898

continuous = do
print $ S.cumulative s3 0
-- 0.15865525393145707
print $ S.quantile s3 0.5
-- 1.0
print $ S.density s3 0
-- 0.24197072451914334
print $ S.mean s3
-- 1.0
print $ S.variance s3
-- 1.0
print $ S.stdDev s3
-- 1.0

214

Constructive Reals

Instead of modeling the real numbers on finite precision floating point numbers
we alternatively work with Num which internally manipulate the power series
expansions for the expressions when performing operations like arithmetic or
transcendental functions without losing precision when performing intermediate
computations. Then we simply slice off a fixed number of terms and approximate
the resulting number to a desired precision. This approach is not without its
limitations and caveats (notably that it may diverge).
exp(x) = 1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + 1/120*x^5 ...
sqrt(1+x) = 1 + 1/2*x - 1/8*x^2 + 1/16*x^3 - 5/128*x^4 + 7/256*x^5 ...
atan(x) = x - 1/3*x^3 + 1/5*x^5 - 1/7*x^7 + 1/9*x^9 - 1/11*x^11 ...
pi = 16 * atan (1/5) - 4 * atan (1/239)

import Data.Number.CReal

-- algebraic
phi :: CReal
phi = (1 + sqrt 5) / 2

-- transcendental
ramanujan :: CReal
ramanujan = exp (pi * sqrt 163)

main :: IO ()
main = do
putStrLn $ showCReal 30 pi
-- 3.141592653589793238462643383279
putStrLn $ showCReal 30 phi
-- 1.618033988749894848204586834366
putStrLn $ showCReal 15 ramanujan
-- 262537412640768743.99999999999925

SAT Solvers

A collection of constraint problems known as satisfiability problems show up in
a number of different disciplines from type checking to package management.
Simply put a satisfiability problem attempts to find solutions to a statement of
conjoined conjunctions and disjunctions in terms of a series of variables. For
example:
(A v ¬B v C) � (B v D v E) � (D v F)

To use the picosat library to solve this, it can be written as zero-terminated lists
of integers and fed to the solver according to a number-to-variable relation:

215

1 -2 3 -- (A v ¬B v C)
2 4 5 -- (B v D v E)
4 6 -- (D v F)

import Picosat

main :: IO [Int]
main = do
solve [[1, -2, 3], [2,4,5], [4,6]]
-- Solution [1,-2,3,4,5,6]

The SAT solver itself can be used to solve satisfiability problems with millions
of variables in this form and is finely tuned.
See:

• picosat

SMT Solvers

A generalization of the SAT problem to include predicates other theories gives
rise to the very sophisticated domain of “Satisfiability Modulo Theory” problems.
The existing SMT solvers are very sophisticated projects (usually bankrolled
by large institutions) and usually have to called out to via foreign function
interface or via a common interface called SMT-lib. The two most common of
use in Haskell are cvc4 from Stanford and z3 from Microsoft Research.
The SBV library can abstract over different SMT solvers to allow us to express
the problem in an embedded domain language in Haskell and then offload the
solving work to the third party library.
As an example, here’s how you can solve a simple cryptarithm

M O N A D
+ B U R R I T O
= B A N D A I D

using SBV library:
import Data.Foldable
import Data.SBV

-- | val [4,2] == 42
val :: [SInteger] -> SInteger
val = foldr1 (\d r -> d + 10*r) . reverse

puzzle :: Symbolic SBool
puzzle = do

216

http://hackage.haskell.org/package/picosat-0.1.1
https://en.wikipedia.org/wiki/Verbal_arithmetic

ds@[b,u,r,i,t,o,m,n,a,d] <- sequenceA [sInteger [v] | v <- "buritomnad"]
constrain $ allDifferent ds
for_ ds $ \d -> constrain $ inRange d (0,9)
pure $ val [b,u,r,r,i,t,o]

+ val [m,o,n,a,d]
.== val [b,a,n,d,a,i,d]

Let’s look at all possible solutions,
�: allSat puzzle
Solution #1:
b = 4 :: Integer
u = 1 :: Integer
r = 5 :: Integer
i = 9 :: Integer
t = 7 :: Integer
o = 0 :: Integer
m = 8 :: Integer
n = 3 :: Integer
a = 2 :: Integer
d = 6 :: Integer

This is the only solution.

See:
• sbv
• cvc4
• z3

Data Structures

Map

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Lookup lookup O(log(n))
Insertion insert O(log(n))
Traversal traverse O(n)

A map is an associative array mapping any instance of Ord keys to values of
any type.

217

http://leventerkok.github.io/sbv/
http://cvc4.cs.nyu.edu/web/
http://z3.codeplex.com/

import qualified Data.Map as Map

kv :: Map.Map Integer String
kv = Map.fromList [(1, "a"), (2, "b")]

lkup :: Integer -> String -> String
lkup key def =
case Map.lookup key kv of
Just val -> val
Nothing -> def

Tree

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Lookup lookup O(log(n))
Insertion insert O(log(n))
Traversal traverse O(n)

import Data.Tree

{-

A
/ \
B C

/ \
D E

-}

tree :: Tree String
tree = Node "A" [Node "B" [], Node "C" [Node "D" [], Node "E" []]]

postorder :: Tree a -> [a]
postorder (Node a ts) = elts ++ [a]
where elts = concat (map postorder ts)

preorder :: Tree a -> [a]
preorder (Node a ts) = a : elts
where elts = concat (map preorder ts)

218

ex1 = drawTree tree
ex2 = drawForest (subForest tree)
ex3 = flatten tree
ex4 = levels tree
ex5 = preorder tree
ex6 = postorder tree

Set

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Insertion insert O(log(n))
Deletion delete O(log(n))
Traversal traverse O(n)
Membership Test member O(log(n))

Sets are an unordered data structures allow Ord values of any type and guaran-
teeing uniqueness with in the structure. They are not identical to the mathe-
matical notion of a Set even though they share the same namesake.
import qualified Data.Set as Set

set :: Set.Set Integer
set = Set.fromList [1..1000]

memtest :: Integer -> Bool
memtest elt = Set.member elt set

Vector

Functionality Function Time Complexity
Initialization empty O(1)
Size length O(1)
Indexing (!) O(1)
Append append O(n)
Traversal traverse O(n)

Vectors are high performance single dimensional arrays that come come in six
variants, two for each of the following types of a mutable and an immutable
variant.

219

• Data.Vector
• Data.Vector.Storable
• Data.Vector.Unboxed

The most notable feature of vectors is constant time memory access with ((!))
as well as variety of efficient map, fold and scan operations on top of a fusion
framework that generates surprisingly optimal code.
fromList :: [a] -> Vector a
toList :: Vector a -> [a]
(!) :: Vector a -> Int -> a
map :: (a -> b) -> Vector a -> Vector b
foldl :: (a -> b -> a) -> a -> Vector b -> a
scanl :: (a -> b -> a) -> a -> Vector b -> Vector a
zipWith :: (a -> b -> c) -> Vector a -> Vector b -> Vector c
iterateN :: Int -> (a -> a) -> a -> Vector a

import Data.Vector.Unboxed as V

norm :: Vector Double -> Double
norm = sqrt . V.sum . V.map (\x -> x*x)

example1 :: Double
example1 = norm $ V.iterateN 100000000 (+1) 0.0

See: Numerical Haskell: A Vector Tutorial

Mutable Vectors

Functionality Function Time Complexity
Initialization empty O(1)
Size length O(1)
Indexing (!) O(1)
Append append O(n)
Traversal traverse O(n)
Update modify O(1)
Read read O(1)
Write write O(1)

freeze :: MVector (PrimState m) a -> m (Vector a)
thaw :: Vector a -> MVector (PrimState m) a

Within the IO monad we can perform arbitrary read and writes on the mutable
vector with constant time reads and writes. When needed a static Vector can
be created to/from the MVector using the freeze/thaw functions.

220

http://wiki.haskell.org/Numeric_Haskell:_A_Vector_Tutorial

import GHC.Prim
import Control.Monad
import Control.Monad.ST
import Control.Monad.Primitive

import Data.Vector.Unboxed (freeze)
import Data.Vector.Unboxed.Mutable
import qualified Data.Vector.Unboxed as V

example :: PrimMonad m => m (V.Vector Int)
example = do
v <- new 10
forM_ [0..9] $ \i ->

write v i (2*i)
freeze v

-- vector computation in IO
vecIO :: IO (V.Vector Int)
vecIO = example

-- vector computation in ST
vecST :: ST s (V.Vector Int)
vecST = example

main :: IO ()
main = do
vecIO >>= print
print $ runST vecST

The vector library itself normally does bounds checks on index operations to
protect against memory corruption. This can be enabled or disabled on the
library level by compiling with boundschecks cabal flag.

Unordered-Containers

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Lookup lookup O(log(n))
Insertion insert O(log(n))
Traversal traverse O(n)

221

fromList :: (Eq k, Hashable k) => [(k, v)] -> HashMap k v
lookup :: (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
insert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v

Both the HashMap and HashSet are purely functional data structures that are
drop in replacements for the containers equivalents but with more efficient
space and time performance. Additionally all stored elements must have a
Hashable instance.
import qualified Data.HashSet as S
import qualified Data.HashMap.Lazy as M

example1 :: M.HashMap Int Char
example1 = M.fromList $ zip [1..10] ['a'..]

example2 :: S.HashSet Int
example2 = S.fromList [1..10]

See: Announcing Unordered Containers

Hashtables

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Lookup lookup O(1)
Insertion insert O(1) amortized
Traversal traverse O(n)

Hashtables provides hashtables with efficient lookup within the ST or IO monad.
import Prelude hiding (lookup)

import Control.Monad.ST
import Data.HashTable.ST.Basic

-- Hashtable parameterized by ST "thread"
type HT s = HashTable s String String

set :: ST s (HT s)
set = do
ht <- new
insert ht "key" "value1"
return ht

get :: HT s -> ST s (Maybe String)

222

http://blog.johantibell.com/2012/03/announcing-unordered-containers-02.html

get ht = do
val <- lookup ht "key"
return val

example :: Maybe String
example = runST (set >>= get)

new :: ST s (HashTable s k v)
insert :: (Eq k, Hashable k) => HashTable s k v -> k -> v -> ST s ()
lookup :: (Eq k, Hashable k) => HashTable s k v -> k -> ST s (Maybe v)

Graphs

The Graph module in the containers library is a somewhat antiquated API for
working with directed graphs. A little bit of data wrapping makes it a little more
straightforward to use. The library is not necessarily well-suited for large graph-
theoretic operations but is perfectly fine for example, to use in a typechecker
which need to resolve strongly connected components of the module definition
graph.
import Data.Tree
import Data.Graph

data Grph node key = Grph
{ _graph :: Graph
, _vertices :: Vertex -> (node, key, [key])
}

fromList :: Ord key => [(node, key, [key])] -> Grph node key
fromList = uncurry Grph . graphFromEdges'

vertexLabels :: Functor f => Grph b t -> (f Vertex) -> f b
vertexLabels g = fmap (vertexLabel g)

vertexLabel :: Grph b t -> Vertex -> b
vertexLabel g = (\(vi, _, _) -> vi) . (_vertices g)

-- Topologically sort graph
topo' :: Grph node key -> [node]
topo' g = vertexLabels g $ topSort (_graph g)

-- Strongly connected components of graph
scc' :: Grph node key -> [[node]]
scc' g = fmap (vertexLabels g . flatten) $ scc (_graph g)

So for example we can construct a simple graph:

223

Figure 4:

224

ex1 :: [(String, String, [String])]
ex1 = [

("a","a",["b"]),
("b","b",["c"]),
("c","c",["a"])

]

ts1 :: [String]
ts1 = topo' (fromList ex1)
-- ["a","b","c"]

sc1 :: [[String]]
sc1 = scc' (fromList ex1)
-- [["a","b","c"]]

Or with two strongly connected subgraphs:

Figure 5:

ex2 :: [(String, String, [String])]
ex2 = [

("a","a",["b"]),
("b","b",["c"]),
("c","c",["a"]),

225

("d","d",["e"]),
("e","e",["f", "e"]),
("f","f",["d", "e"])

]

ts2 :: [String]
ts2 = topo' (fromList ex2)
-- ["d","e","f","a","b","c"]

sc2 :: [[String]]
sc2 = scc' (fromList ex2)
-- [["d","e","f"],["a","b","c"]]

See: GraphSCC

Graph Theory

The fgl library provides a more efficient graph structure and a wide variety
of common graph-theoretic operations. For example calculating the dominance
frontier of a graph shows up quite frequently in control flow analysis for compiler
design.
import qualified Data.Graph.Inductive as G

cyc3 :: G.Gr Char String
cyc3 = G.buildGr

[([("ca",3)],1,'a',[("ab",2)]),
([],2,'b',[("bc",3)]),
([],3,'c',[])]

-- Loop query
ex1 :: Bool
ex1 = G.hasLoop x

-- Dominators
ex2 :: [(G.Node, [G.Node])]
ex2 = G.dom x 0

x :: G.Gr Int ()
x = G.insEdges edges gr
where
gr = G.insNodes nodes G.empty
edges = [(0,1,()), (0,2,()), (2,1,()), (2,3,())]
nodes = zip [0,1 ..] [2,3,4,1]

226

http://hackage.haskell.org/package/GraphSCC

Figure 6:

227

DList

A dlist is a list-like structure that is optimized for O(1) append operations,
internally it uses a Church encoding of the list structure. It is specifically suited
for operations which are append-only and need only access it when manifesting
the entire structure. It is particularly well-suited for use in the Writer monad.
import Data.DList
import Control.Monad
import Control.Monad.Writer

logger :: Writer (DList Int) ()
logger = replicateM_ 100000 $ tell (singleton 0)

Sequence

The sequence data structure behaves structurally similar to list but is optimized
for append/prepend operations and traversal.
import Data.Sequence

a :: Seq Int
a = fromList [1,2,3]

a0 :: Seq Int
a0 = a |> 4
-- [1,2,3,4]

a1 :: Seq Int
a1 = 0 <| a
-- [0,1,2,3]

FFI

This is an advanced section, knowledge of FFI is not typically necessary to write
Haskell.

Pure Functions

Wrapping pure C functions with primitive types is trivial.
/* $(CC) -c simple.c -o simple.o */

int example(int a, int b)
{

228

return a + b;
}

-- ghc simple.o simple_ffi.hs -o simple_ffi
{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign.C.Types

foreign import ccall safe "example" example
:: CInt -> CInt -> CInt

main = print (example 42 27)

Storable Arrays

There exists a Storable typeclass that can be used to provide low-level access
to the memory underlying Haskell values. Ptr objects in Haskell behave much
like C pointers although arithmetic with them is in terms of bytes only, not the
size of the type associated with the pointer (this differs from C).
The Prelude defines Storable interfaces for most of the basic types as well as
types in the Foreign.C library.
class Storable a where
sizeOf :: a -> Int
alignment :: a -> Int
peek :: Ptr a -> IO a
poke :: Ptr a -> a -> IO ()

To pass arrays from Haskell to C we can again use Storable Vector and several
unsafe operations to grab a foreign pointer to the underlying data that can be
handed off to C. Once we’re in C land, nothing will protect us from doing evil
things to memory!
/* $(CC) -c qsort.c -o qsort.o */
void swap(int *a, int *b)
{

int t = *a;
*a = *b;
*b = t;

}

void sort(int *xs, int beg, int end)
{

if (end > beg + 1) {
int piv = xs[beg], l = beg + 1, r = end;

while (l < r) {

229

if (xs[l] <= piv) {
l++;

} else {
swap(&xs[l], &xs[--r]);

}
}

swap(&xs[--l], &xs[beg]);
sort(xs, beg, l);
sort(xs, r, end);

}
}

-- ghc qsort.o ffi.hs -o ffi
{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign.Ptr
import Foreign.C.Types

import qualified Data.Vector.Storable as V
import qualified Data.Vector.Storable.Mutable as VM

foreign import ccall safe "sort" qsort
:: Ptr a -> CInt -> CInt -> IO ()

main :: IO ()
main = do
let vs = V.fromList ([1,3,5,2,1,2,5,9,6] :: [CInt])
v <- V.thaw vs
VM.unsafeWith v $ \ptr -> do
qsort ptr 0 9

out <- V.freeze v
print out

The names of foreign functions from a C specific header file can be qualified.
foreign import ccall unsafe "stdlib.h malloc"

malloc :: CSize -> IO (Ptr a)

Prepending the function name with a & allows us to create a reference to the
function pointer itself.
foreign import ccall unsafe "stdlib.h &malloc"

malloc :: FunPtr a

230

Function Pointers

Using the above FFI functionality, it’s trivial to pass C function pointers into
Haskell, but what about the inverse passing a function pointer to a Haskell
function into C using foreign import ccall "wrapper".
#include <stdio.h>

void invoke(void *fn(int))
{
int n = 42;
printf("Inside of C, now we'll call Haskell.\n");
fn(n);
printf("Back inside of C again.\n");

}

{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign
import System.IO
import Foreign.C.Types(CInt(..))

foreign import ccall "wrapper"
makeFunPtr :: (CInt -> IO ()) -> IO (FunPtr (CInt -> IO ()))

foreign import ccall "pointer.c invoke"
invoke :: FunPtr (CInt -> IO ()) -> IO ()

fn :: CInt -> IO ()
fn n = do
putStrLn "Hello from Haskell, here's a number passed between runtimes:"
print n
hFlush stdout

main :: IO ()
main = do
fptr <- makeFunPtr fn
invoke fptr

Will yield the following output:
Inside of C, now we'll call Haskell
Hello from Haskell, here's a number passed between runtimes:
42
Back inside of C again.

231

Concurrency

The definitive reference on concurrency and parallelism in Haskell is Simon
Marlow’s text. This will section will just gloss over these topics because they
are far better explained in this book.
See: Parallel and Concurrent Programming in Haskell
forkIO :: IO () -> IO ThreadId

Haskell threads are extremely cheap to spawn, using only 1.5KB of RAM de-
pending on the platform and are much cheaper than a pthread in C. Calling
forkIO 106 times completes just short of a 1s. Additionally, functional purity
in Haskell also guarantees that a thread can almost always be terminated even
in the middle of a computation without concern.
See: The Scheduler

Sparks

The most basic “atom” of parallelism in Haskell is a spark. It is a hint to the
GHC runtime that a computation can be evaluated to weak head normal form
in parallel.
rpar :: a -> Eval a
rseq :: Strategy a
rdeepseq :: NFData a => Strategy a

runEval :: Eval a -> a

rpar a spins off a separate spark that evolutes a to weak head normal form
and places the computation in the spark pool. When the runtime determines
that there is an available CPU to evaluate the computation it will evaluate (
convert) the spark. If the main thread of the program is the evaluator for the
spark, the spark is said to have fizzled. Fizzling is generally bad and indicates
that the logic or parallelism strategy is not well suited to the work that is being
evaluated.
The spark pool is also limited (but user-adjustable) to a default of 8000 (as of
GHC 7.8.3). Sparks that are created beyond that limit are said to overflow.
-- Evaluates the arguments to f in parallel before application.
par2 f x y = x `rpar` y `rpar` f x y

An argument to rseq forces the evaluation of a spark before evaluation contin-
ues.

Action Description
Fizzled The resulting value has already been evaluated by the main thread so the spark need not be converted.
Dud The expression has already been evaluated, the computed value is returned and the spark is not converted.

232

http://chimera.labs.oreilly.com/books/1230000000929
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Scheduler#TheScheduler

Action Description
GC'd The spark is added to the spark pool but the result is not referenced, so it is garbage collected.
Overflowed Insufficient space in the spark pool when spawning.

The parallel runtime is necessary to use sparks, and the resulting program must
be compiled with -threaded. Additionally the program itself can be specified
to take runtime options with -rtsopts such as the number of cores to use.
ghc -threaded -rtsopts program.hs
./program +RTS -s N8 -- use 8 cores

The runtime can be asked to dump information about the spark evaluation by
passing the -s flag.
$./spark +RTS -N4 -s

Tot time (elapsed) Avg pause Max pause
Gen 0 5 colls, 5 par 0.02s 0.01s 0.0017s 0.0048s
Gen 1 3 colls, 2 par 0.00s 0.00s 0.0004s 0.0007s

Parallel GC work balance: 1.83% (serial 0%, perfect 100%)

TASKS: 6 (1 bound, 5 peak workers (5 total), using -N4)

SPARKS: 20000 (20000 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

The parallel computations themselves are sequenced in the Eval monad, whose
evaluation with runEval is itself a pure computation.
example :: (a -> b) -> a -> a -> (b, b)
example f x y = runEval $ do
a <- rpar $ f x
b <- rpar $ f y
rseq a
rseq b
return (a, b)

Threadscope

Passing the flag -l generates the eventlog which can be rendered with the thread-
scope library.
$ ghc -O2 -threaded -rtsopts -eventlog Example.hs
$./program +RTS -N4 -l
$ threadscope Example.eventlog

See Simon Marlows’s Parallel and Concurrent Programming in Haskell for a
detailed guide on interpreting and profiling using Threadscope.

233

Figure 7:

234

See:
• Performance profiling with ghc-events-analyze

Strategies

type Strategy a = a -> Eval a
using :: a -> Strategy a -> a

Sparks themselves form the foundation for higher level parallelism constructs
known as strategies which adapt spark creation to fit the computation or data
structure being evaluated. For instance if we wanted to evaluate both elements
of a tuple in parallel we can create a strategy which uses sparks to evaluate both
sides of the tuple.
import Control.Parallel.Strategies

parPair' :: Strategy (a, b)
parPair' (a, b) = do
a' <- rpar a
b' <- rpar b
return (a', b')

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

serial :: (Int, Int)
serial = (fib 30, fib 31)

parallel :: (Int, Int)
parallel = runEval . parPair' $ (fib 30, fib 31)

This pattern occurs so frequently the combinator using can be used to write it
equivalently in operator-like form that may be more visually appealing to some.
using :: a -> Strategy a -> a
x `using` s = runEval (s x)

parallel ::: (Int, Int)
parallel = (fib 30, fib 31) `using` parPair

For a less contrived example consider a parallel parmap which maps a pure
function over a list of a values in parallel.
import Control.Parallel.Strategies

parMap' :: (a -> b) -> [a] -> Eval [b]

235

http://www.well-typed.com/blog/86/

parMap' f [] = return []
parMap' f (a:as) = do
b <- rpar (f a)
bs <- parMap' f as
return (b:bs)

result :: [Int]
result = runEval $ parMap' (+1) [1..1000]

The functions above are quite useful, but will break down if evaluation of the
arguments needs to be parallelized beyond simply weak head normal form. For
instance if the arguments to rpar is a nested constructor we’d like to parallelize
the entire section of work in evaluated the expression to normal form instead
of just the outer layer. As such we’d like to generalize our strategies so the
the evaluation strategy for the arguments can be passed as an argument to the
strategy.
Control.Parallel.Strategies contains a generalized version of rpar which
embeds additional evaluation logic inside the rpar computation in Eval monad.
rparWith :: Strategy a -> Strategy a

Using the deepseq library we can now construct a Strategy variant of rseq that
evaluates to full normal form.
rdeepseq :: NFData a => Strategy a
rdeepseq x = rseq (force x)

We now can create a “higher order” strategy that takes two strategies and itself
yields a a computation which when evaluated uses the passed strategies in its
scheduling.
import Control.DeepSeq
import Control.Parallel.Strategies

evalPair :: Strategy a -> Strategy b -> Strategy (a, b)
evalPair sa sb (a, b) = do
a' <- sa a
b' <- sb b
return (a', b')

parPair :: Strategy a -> Strategy b -> Strategy (a, b)
parPair sa sb = evalPair (rparWith sa) (rparWith sb)

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

serial :: ([Int], [Int])

236

serial = (a, b)
where
a = fmap fib [0..30]
b = fmap fib [1..30]

parallel :: ([Int], [Int])
parallel = (a, b) `using` evalPair rdeepseq rdeepseq
where
a = fmap fib [0..30]
b = fmap fib [1..30]

These patterns are implemented in the Strategies library along with several other
general forms and combinators for combining strategies to fit many different
parallel computations.
parTraverse :: Traversable t => Strategy a -> Strategy (t a)
dot :: Strategy a -> Strategy a -> Strategy a
($||) :: (a -> b) -> Strategy a -> a -> b
(.||) :: (b -> c) -> Strategy b -> (a -> b) -> a -> c

See:
• Control.Concurent.Strategies

STM

atomically :: STM a -> IO a
orElse :: STM a -> STM a -> STM a
retry :: STM a

newTVar :: a -> STM (TVar a)
newTVarIO :: a -> IO (TVar a)
writeTVar :: TVar a -> a -> STM ()
readTVar :: TVar a -> STM a

modifyTVar :: TVar a -> (a -> a) -> STM ()
modifyTVar' :: TVar a -> (a -> a) -> STM ()

Software Transactional Memory is a technique for guaranteeing atomicity of
values in parallel computations, such that all contexts view the same data when
read and writes are guaranteed never to result in inconsistent states.
The strength of Haskell’s purity guarantees that transactions within STM are
pure and can always be rolled back if a commit fails.
import Control.Monad
import Control.Concurrent
import Control.Concurrent.STM

237

http://hackage.haskell.org/package/parallel-3.2.0.4/docs/Control-Parallel-Strategies.html

type Account = TVar Double

transfer :: Account -> Account -> Double -> STM ()
transfer from to amount = do
available <- readTVar from
when (amount > available) retry

modifyTVar from (+ (-amount))
modifyTVar to (+ amount)

-- Threads are scheduled non-deterministically.
actions :: Account -> Account -> [IO ThreadId]
actions a b = map forkIO [

-- transfer to
atomically (transfer a b 10)

, atomically (transfer a b (-20))
, atomically (transfer a b 30)

-- transfer back
, atomically (transfer a b (-30))
, atomically (transfer a b 20)
, atomically (transfer a b (-10))

]

main :: IO ()
main = do
accountA <- atomically $ newTVar 60
accountB <- atomically $ newTVar 0

sequence_ (actions accountA accountB)

balanceA <- atomically $ readTVar accountA
balanceB <- atomically $ readTVar accountB

print $ balanceA == 60
print $ balanceB == 0

See: Beautiful Concurrency

Monad Par

Using the Par monad we express our computation as a data flow graph which
is scheduled in order of the connections between forked computations which
exchange resulting computations with IVar.

238

https://www.fpcomplete.com/school/advanced-haskell/beautiful-concurrency

new :: Par (IVar a)
put :: NFData a => IVar a -> a -> Par ()
get :: IVar a -> Par a
fork :: Par () -> Par ()
spawn :: NFData a => Par a -> Par (IVar a)

Figure 8:

import Control.Monad
import Control.Monad.Par

f, g :: Int -> Int
f x = x + 10
g x = x * 10

-- f x g x

239

-- \ /
-- a + b
-- / \
-- f (a+b) g (a+b)
-- \ /
-- (d,e)

example1 :: Int -> (Int, Int)
example1 x = runPar $ do
[a,b,c,d,e] <- replicateM 5 new
fork (put a (f x))
fork (put b (g x))
a' <- get a
b' <- get b
fork (put c (a' + b'))
c' <- get c
fork (put d (f c'))
fork (put e (g c'))
d' <- get d
e' <- get e
return (d', e')

example2 :: [Int]
example2 = runPar $ do
xs <- parMap (+1) [1..25]
return xs

-- foldr (+) 0 (map (^2) [1..xs])
example3 :: Int -> Int
example3 n = runPar $ do
let range = (InclusiveRange 1 n)
let mapper x = return (x^2)
let reducer x y = return (x+y)
parMapReduceRangeThresh 10 range mapper reducer 0

async

Async is a higher level set of functions that work on top of Control.Concurrent
and STM.
async :: IO a -> IO (Async a)
wait :: Async a -> IO a
cancel :: Async a -> IO ()
concurrently :: IO a -> IO b -> IO (a, b)
race :: IO a -> IO b -> IO (Either a b)

240

import Control.Monad
import Control.Applicative
import Control.Concurrent
import Control.Concurrent.Async
import Data.Time

timeit :: IO a -> IO (a,Double)
timeit io = do
t0 <- getCurrentTime
a <- io
t1 <- getCurrentTime
return (a, realToFrac (t1 `diffUTCTime` t0))

worker :: Int -> IO Int
worker n = do
-- simulate some work
threadDelay (10^2 * n)
return (n * n)

-- Spawn 2 threads in parallel, halt on both finished.
test1 :: IO (Int, Int)
test1 = do
val1 <- async $ worker 1000
val2 <- async $ worker 2000
(,) <$> wait val1 <*> wait val2

-- Spawn 2 threads in parallel, halt on first finished.
test2 :: IO (Either Int Int)
test2 = do
let val1 = worker 1000
let val2 = worker 2000
race val1 val2

-- Spawn 10000 threads in parallel, halt on all finished.
test3 :: IO [Int]
test3 = mapConcurrently worker [0..10000]

main :: IO ()
main = do
print =<< timeit test1
print =<< timeit test2
print =<< timeit test3

241

Graphics

Diagrams

Diagrams is a a parser combinator library for generating vector images to SVG
and a variety of other formats.
import Diagrams.Prelude
import Diagrams.Backend.SVG.CmdLine

sierpinski :: Int -> Diagram SVG R2
sierpinski 1 = eqTriangle 1
sierpinski n =

s
===

(s ||| s) # centerX
where
s = sierpinski (n - 1)

example :: Diagram SVG R2
example = sierpinski 5 # fc black

main :: IO ()
main = defaultMain example

$ runhaskell diagram1.hs -w 256 -h 256 -o diagram1.svg

Figure 9:

See: Diagrams Quick Start Tutorial

242

http://projects.haskell.org/diagrams/doc/quickstart.html

Parsing

Parsec

For parsing in Haskell it is quite common to use a family of libraries known as
Parser Combinators which let us write code to generate parsers which themselves
looks very similar to the parser grammar itself!

Combinators
<|> The choice operator tries to parse the first argument before proceeding to the second. Can be chained sequentially to a generate a sequence of options.
many Consumes an arbitrary number of patterns matching the given pattern and returns them as a list.
many1 Like many but requires at least one match.
optional Optionally parses a given pattern returning its value as a Maybe.
try Backtracking operator will let us parse ambiguous matching expressions and restart with a different pattern.

There are two styles of writing Parsec, one can choose to write with monads or
with applicatives.
parseM :: Parser Expr
parseM = do
a <- identifier
char '+'
b <- identifier
return $ Add a b

The same code written with applicatives uses the applicative combinators:
-- | Sequential application.
(<*>) :: f (a -> b) -> f a -> f b

-- | Sequence actions, discarding the value of the first argument.
(*>) :: f a -> f b -> f b
(*>) = liftA2 (const id)

-- | Sequence actions, discarding the value of the second argument.
(<*) :: f a -> f b -> f a
(<*) = liftA2 const

parseA :: Parser Expr
parseA = Add <$> identifier <* char '+' <*> identifier

Now for instance if we want to parse simple lambda expressions we can encode
the parser logic as compositions of these combinators which yield the string
parser when evaluated under with the parse.
import Text.Parsec
import Text.Parsec.String

243

data Expr
= Var Char
| Lam Char Expr
| App Expr Expr
deriving Show

lam :: Parser Expr
lam = do
char '\\'
n <- letter
string "->"
e <- expr
return $ Lam n e

app :: Parser Expr
app = do
apps <- many1 term
return $ foldl1 App apps

var :: Parser Expr
var = do
n <- letter
return $ Var n

parens :: Parser Expr -> Parser Expr
parens p = do
char '('
e <- p
char ')'
return e

term :: Parser Expr
term = var <|> parens expr

expr :: Parser Expr
expr = lam <|> app

decl :: Parser Expr
decl = do
e <- expr
eof
return e

test :: IO ()
test = parseTest decl "\\y->y(\\x->x)y"

244

main :: IO ()
main = test >>= print

Custom Lexer

In our previous example lexing pass was not necessary because each lexeme
mapped to a sequential collection of characters in the stream type. If we wanted
to extend this parser with a non-trivial set of tokens, then Parsec provides us
with a set of functions for defining lexers and integrating these with the parser
combinators. The simplest example builds on top of the builtin Parsec language
definitions which define a set of most common lexical schemes.
For instance we’ll build on top of the empty language grammar on top of the
haskellDef grammer that uses the Text token instead of string.
{-# LANGUAGE OverloadedStrings #-}

import Text.Parsec
import Text.Parsec.Text
import qualified Text.Parsec.Token as Tok
import qualified Text.Parsec.Language as Lang

import Data.Functor.Identity (Identity)
import qualified Data.Text as T
import qualified Data.Text.IO as TIO

data Expr
= Var T.Text
| App Expr Expr
| Lam T.Text Expr
deriving (Show)

lexer :: Tok.GenTokenParser T.Text () Identity
lexer = Tok.makeTokenParser style

style :: Tok.GenLanguageDef T.Text () Identity
style = Lang.emptyDef
{ Tok.commentStart = "{-"
, Tok.commentEnd = "-}"
, Tok.commentLine = "--"
, Tok.nestedComments = True
, Tok.identStart = letter
, Tok.identLetter = alphaNum <|> oneOf "_'"
, Tok.opStart = Tok.opLetter style
, Tok.opLetter = oneOf ":!#$%&*+./<=>?@\\^|-~"

245

, Tok.reservedOpNames = []
, Tok.reservedNames = []
, Tok.caseSensitive = True
}

parens :: Parser a -> Parser a
parens = Tok.parens lexer

reservedOp :: T.Text -> Parser ()
reservedOp op = Tok.reservedOp lexer (T.unpack op)

ident :: Parser T.Text
ident = T.pack <$> Tok.identifier lexer

contents :: Parser a -> Parser a
contents p = do
Tok.whiteSpace lexer
r <- p
eof
return r

var :: Parser Expr
var = do
var <- ident
return (Var var)

app :: Parser Expr
app = do
e1 <- expr
e2 <- expr
return (App e1 e2)

fun :: Parser Expr
fun = do
reservedOp "\\"
binder <- ident
reservedOp "."
rhs <- expr
return (Lam binder rhs)

expr :: Parser Expr
expr = do
es <- many1 aexp
return (foldl1 App es)

aexp :: Parser Expr

246

aexp = fun <|> var <|> (parens expr)

test :: T.Text -> Either ParseError Expr
test = parse (contents expr) "<stdin>"

repl :: IO ()
repl = do
str <- TIO.getLine
print (test str)
repl

main :: IO ()
main = repl

See: Text.Parsec.Language

Simple Parsing

Putting our lexer and parser together we can write down a more robust parser
for our little lambda calculus syntax.
module Parser (parseExpr) where

import Text.Parsec
import Text.Parsec.String (Parser)
import Text.Parsec.Language (haskellStyle)

import qualified Text.Parsec.Expr as Ex
import qualified Text.Parsec.Token as Tok

type Id = String

data Expr
= Lam Id Expr
| App Expr Expr
| Var Id
| Num Int
| Op Binop Expr Expr
deriving (Show)

data Binop = Add | Sub | Mul deriving Show

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser style
where ops = ["->","\\","+","*","-","="]

style = haskellStyle {Tok.reservedOpNames = ops }

247

https://hackage.haskell.org/package/parsec-3.1.9/docs/Text-Parsec-Language.html

reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

identifier :: Parser String
identifier = Tok.identifier lexer

parens :: Parser a -> Parser a
parens = Tok.parens lexer

contents :: Parser a -> Parser a
contents p = do
Tok.whiteSpace lexer
r <- p
eof
return r

natural :: Parser Integer
natural = Tok.natural lexer

variable :: Parser Expr
variable = do
x <- identifier
return (Var x)

number :: Parser Expr
number = do
n <- natural
return (Num (fromIntegral n))

lambda :: Parser Expr
lambda = do
reservedOp "\\"
x <- identifier
reservedOp "->"
e <- expr
return (Lam x e)

aexp :: Parser Expr
aexp = parens expr

<|> variable
<|> number
<|> lambda

term :: Parser Expr
term = Ex.buildExpressionParser table aexp

248

where infixOp x f = Ex.Infix (reservedOp x >> return f)
table = [[infixOp "*" (Op Mul) Ex.AssocLeft],

[infixOp "+" (Op Add) Ex.AssocLeft]]

expr :: Parser Expr
expr = do
es <- many1 term
return (foldl1 App es)

parseExpr :: String -> Expr
parseExpr input =
case parse (contents expr) "<stdin>" input of
Left err -> error (show err)
Right ast -> ast

main :: IO ()
main = getLine >>= print . parseExpr >> main

Trying it out:
�: runhaskell simpleparser.hs
1+2
Op Add (Num 1) (Num 2)

\i -> \x -> x
Lam "i" (Lam "x" (Var "x"))

\s -> \f -> \g -> \x -> f x (g x)
Lam "s" (Lam "f" (Lam "g" (Lam "x" (App (App (Var "f") (Var "x")) (App (Var "g") (Var "x"))))))

Generic Parsing

Previously we defined generic operations for pretty printing and this begs the
question of whether we can write a parser on top of Generics. The answer is
generally yes, so long as there is a direct mapping between the specific lexemes
and sum and products types. Consider the simplest case where we just read off
the names of the constructors using the regular Generics machinery and then
build a Parsec parser terms of them.
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}

import Text.Parsec

249

import Text.Parsec.Text.Lazy
import Control.Applicative ((<*), (<*>), (<$>))
import GHC.Generics

class GParse f where
gParse :: Parser (f a)

-- Type synonym metadata for constructors
instance (GParse f, Constructor c) => GParse (C1 c f) where
gParse =
let con = conName (undefined :: t c f a) in
(fmap M1 gParse) <* string con

-- Constructor names
instance GParse f => GParse (D1 c f) where
gParse = fmap M1 gParse

-- Sum types
instance (GParse a, GParse b) => GParse (a :+: b) where
gParse = try (fmap L1 gParse <|> fmap R1 gParse)

-- Product types
instance (GParse f, GParse g) => GParse (f :*: g) where
gParse = (:*:) <$> gParse <*> gParse

-- Nullary constructors
instance GParse U1 where
gParse = return U1

data Scientist
= Newton
| Einstein
| Schrodinger
| Feynman
deriving (Show, Generic)

data Musician
= Vivaldi
| Bach
| Mozart
| Beethoven
deriving (Show, Generic)

gparse :: (Generic g, GParse (Rep g)) => Parser g
gparse = fmap to gParse

250

scientist :: Parser Scientist
scientist = gparse

musician :: Parser Musician
musician = gparse

�: parseTest parseMusician "Bach"
Bach

�: parseTest parseScientist "Feynman"
Feynman

Attoparsec

Attoparsec is a parser combinator like Parsec but more suited for bulk parsing
of large text and binary files instead of parsing language syntax to ASTs. When
written properly Attoparsec parsers can be efficient.
One notable distinction between Parsec and Attoparsec is that backtracking
operator (try) is not present and reflects on attoparsec’s different underlying
parser model.
For a simple little lambda calculus language we can use attoparsec much in the
same we used parsec:
{-# LANGUAGE OverloadedStrings #-}
{-# OPTIONS_GHC -fno-warn-unused-do-bind #-}

import Control.Applicative
import Data.Attoparsec.Text
import qualified Data.Text as T
import qualified Data.Text.IO as T
import Data.List (foldl1')

data Name
= Gen Int
| Name T.Text
deriving (Eq, Show, Ord)

data Expr
= Var Name
| App Expr Expr
| Lam [Name] Expr
| Lit Int
| Prim PrimOp
deriving (Eq, Show)

251

http://www.serpentine.com/blog/2014/05/31/attoparsec/

data PrimOp
= Add
| Sub
| Mul
| Div
deriving (Eq, Show)

data Defn = Defn Name Expr
deriving (Eq, Show)

name :: Parser Name
name = Name . T.pack <$> many1 letter

num :: Parser Expr
num = Lit <$> signed decimal

var :: Parser Expr
var = Var <$> name

lam :: Parser Expr
lam = do
string "\\"
vars <- many1 (skipSpace *> name)
skipSpace *> string "->"
body <- expr
return (Lam vars body)

eparen :: Parser Expr
eparen = char '(' *> expr <* skipSpace <* char ')'

prim :: Parser Expr
prim = Prim <$> (

char '+' *> return Add
<|> char '-' *> return Sub
<|> char '*' *> return Mul
<|> char '/' *> return Div)

expr :: Parser Expr
expr = foldl1' App <$> many1 (skipSpace *> atom)

atom :: Parser Expr
atom = try lam

<|> eparen
<|> prim
<|> var
<|> num

252

def :: Parser Defn
def = do
skipSpace
nm <- name
skipSpace *> char '=' *> skipSpace
ex <- expr
skipSpace <* char ';'
return $ Defn nm ex

file :: T.Text -> Either String [Defn]
file = parseOnly (many def <* skipSpace)

parseFile :: FilePath -> IO (Either T.Text [Defn])
parseFile path = do
contents <- T.readFile path
case file contents of
Left a -> return $ Left (T.pack a)
Right b -> return $ Right b

main :: IO (Either T.Text [Defn])
main = parseFile "simple.ml"

For an example try the above parser with the following simple lambda expres-
sion.
f = g (x - 1);
g = f (x + 1);
h = \x y -> (f x) + (g y);

Attoparsec adapts very well to binary and network protocol style parsing as
well, this is extracted from a small implementation of a distributed consensus
network protocol:
{-# LANGUAGE OverloadedStrings #-}

import Control.Monad

import Data.Attoparsec
import Data.Attoparsec.Char8 as A
import Data.ByteString.Char8

data Action
= Success
| KeepAlive
| NoResource
| Hangup
| NewLeader

253

| Election
deriving Show

type Sender = ByteString
type Payload = ByteString

data Message = Message
{ action :: Action
, sender :: Sender
, payload :: Payload
} deriving Show

proto :: Parser Message
proto = do
act <- paction
send <- A.takeTill (== '.')
body <- A.takeTill (A.isSpace)
endOfLine
return $ Message act send body

paction :: Parser Action
paction = do
c <- anyWord8
case c of
1 -> return Success
2 -> return KeepAlive
3 -> return NoResource
4 -> return Hangup
5 -> return NewLeader
6 -> return Election
_ -> mzero

main :: IO ()
main = do
let msgtext = "\x01\x6c\x61\x70\x74\x6f\x70\x2e\x33\x2e\x31\x34\x31\x35\x39\x32\x36\x35\x33\x35\x0A"
let msg = parseOnly proto msgtext
print msg

See: Text Parsing Tutorial

Optparse Applicative

Optparse-applicative is a combinator library for building command line inter-
faces that take in various user flags, commmands and switches and map them
into Haskell data structures that can handle the input. The main interface

254

https://www.fpcomplete.com/school/starting-with-haskell/libraries-and-frameworks/text-manipulation/attoparsec

is through the applicative functor Parser and various combinators such as
strArgument and flag which populate the option parsing table which some
monadic action which returns a Haskell value. The resulting sequence of values
can be combined applicatively into a larger Config data structure that holds all
the given options. The --help header is also automatically generated from the
combinators.
./optparse
Usage: optparse.hs [filename...] [--quiet] [--cheetah]

Available options:
-h,--help Show this help text
filename... Input files
--quiet Whether to shut up.
--cheetah Perform task quickly.

import Data.List
import Data.Monoid
import Options.Applicative

data Opts = Opts
{ _files :: [String]
, _quiet :: Bool
, _fast :: Speed
}

data Speed = Slow | Fast

options :: Parser Opts
options = Opts <$> filename <*> quiet <*> fast
where
filename :: Parser [String]
filename = many $ argument str $

metavar "filename..."
<> help "Input files"

fast :: Parser Speed
fast = flag Slow Fast $

long "cheetah"
<> help "Perform task quickly."

quiet :: Parser Bool
quiet = switch $

long "quiet"
<> help "Whether to shut up."

greet :: Opts -> IO ()

255

greet (Opts files quiet fast) = do
putStrLn "reading these files:"
mapM_ print files

case fast of
Fast -> putStrLn "quickly"
Slow -> putStrLn "slowly"

case quiet of
True -> putStrLn "quietly"
False -> putStrLn "loudly"

opts :: ParserInfo Opts
opts = info (helper <*> options) fullDesc

main :: IO ()
main = execParser opts >>= greet

See: Optparse Applicative Tutorial

Happy & Alex

Happy is a parser generator system for Haskell, similar to the tool ‘yacc’ for
C. It works as a preprocessor with it’s own syntax that generates a parse table
from two specifications, a lexer file and parser file. Happy does not have the
ssame underlying parser implementation as parser combinators and can effec-
tively work with left-recursive grammars without explicit factorization. It can
also easily be modified to track position information for tokens and handle off-
side parsing rules for indentation-sensitive grammars. Happy is used in GHC
itself for Haskell’s grammar.

1. Lexer.x
2. Parser.y

Running the standalone commands will generate the Haskell source for the mod-
ules.
$ alex Lexer.x -o Lexer.hs
$ happy Parser.y -o Parser.hs

The generated modules are not human readable generally and unfortunatly error
messages are given in the Haskell source, not the Happy source.

Lexer
For instance we could define a little toy lexer with a custom set of tokens.

256

https://github.com/pcapriotti/optparse-applicative

{
module Lexer (
Token(..),
scanTokens

) where

import Syntax
}

%wrapper "basic"

$digit = 0-9
$alpha = [a-zA-Z]
$eol = [\n]

tokens :-

-- Whitespace insensitive
$eol ;
$white+ ;
print { \s -> TokenPrint }
$digit+ { \s -> TokenNum (read s) }
\= { \s -> TokenEq }
$alpha [$alpha $digit _ \']* { \s -> TokenSym s }

{

data Token
= TokenNum Int
| TokenSym String
| TokenPrint
| TokenEq
| TokenEOF
deriving (Eq,Show)

scanTokens = alexScanTokens

}

Parser
The associated parser is list of a production rules and a monad to running the
parser in. Production rules consist of a set of options on the left and generating
Haskell expressions on the right with indexed metavariables ($1, $2, …) mapping
to the ordered terms on the left (i.e. in the second term term ~ $1, term ~ $2).

257

terms
: term { [$1] }
| term terms { $1 : $2 }

{
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

module Parser (
parseExpr,

) where

import Lexer
import Syntax

import Control.Monad.Except
}

%name expr
%tokentype { Token }
%monad { Except String } { (>>=) } { return }
%error { parseError }

%token
int { TokenNum $$ }
var { TokenSym $$ }
print { TokenPrint }
'=' { TokenEq }

%%

terms
: term { [$1] }
| term terms { $1 : $2 }

term
: var { Var $1 }
| var '=' int { Assign $1 $3 }
| print term { Print $2 }

{

parseError :: [Token] -> Except String a
parseError (l:ls) = throwError (show l)
parseError [] = throwError "Unexpected end of Input"

parseExpr :: String -> Either String [Expr]

258

parseExpr input =
let tokenStream = scanTokens input in
runExcept (expr tokenStream)

}

As a simple input consider the following simple program.
x = 4
print x
y = 5
print y
y = 6
print y

Configurator

{-# LANGUAGE OverloadedStrings #-}

import Data.Text
import qualified Data.Configurator as C

data Config = Config
{ verbose :: Bool
, loggingLevel :: Int
, logfile :: FilePath
, dbHost :: Text
, dbUser :: Text
, dbDatabase :: Text
, dbpassword :: Maybe Text
} deriving (Eq, Show)

readConfig :: FilePath -> IO Config
readConfig cfgFile = do
cfg <- C.load [C.Required cfgFile]
verbose <- C.require cfg "logging.verbose"
loggingLevel <- C.require cfg "logging.loggingLevel"
logFile <- C.require cfg "logging.logfile"
hostname <- C.require cfg "database.hostname"
username <- C.require cfg "database.username"
database <- C.require cfg "database.database"
password <- C.lookup cfg "database.password"
return $ Config verbose loggingLevel logFile hostname username database password

main :: IO ()
main = do
cfg <-readConfig "example.config"

259

print cfg

logging
{
verbose = true
logfile = "/tmp/app.log"
loggingLevel = 3

}

database
{
hostname = "us-east-1.rds.amazonaws.com"
username = "app"
database = "booktown"
password = "hunter2"

}

Streaming

Lazy IO

The problem with using the usual monadic approach to processing data accumu-
lated through IO is that the Prelude tools require us to manifest large amounts
of data in memory all at once before we can even begin computation.
mapM :: Monad m => (a -> m b) -> [a] -> m [b]
sequence :: Monad m => [m a] -> m [a]

Reading from the file creates a thunk for the string that forced will then read
the file. The problem is then that this method ties the ordering of IO effects to
evaluation order which is difficult to reason about in the large.
Consider that normally the monad laws (in the absence of seq) guarantee that
these computations should be identical. But using lazy IO we can construct a
degenerate case.
import System.IO

main :: IO ()
main = do
withFile "foo.txt" ReadMode $ \fd -> do
contents <- hGetContents fd
print contents

-- "foo\n"

contents <- withFile "foo.txt" ReadMode hGetContents

260

print contents
-- ""

So what we need is a system to guarantee deterministic resource handling with
constant memory usage. To that end both the Conduits and Pipes libraries
solved this problem using different (though largely equivalent) approaches.

Pipes

await :: Monad m => Pipe a y m a
yield :: Monad m => a -> Pipe x a m ()

(>->) :: Monad m
=> Pipe a b m r
-> Pipe b c m r
-> Pipe a c m r

runEffect :: Monad m => Effect m r -> m r
toListM :: Monad m => Producer a m () -> m [a]

Pipes is a stream processing library with a strong emphasis on the static seman-
tics of composition. The simplest usage is to connect “pipe” functions with a
(>->) composition operator, where each component can await and yield to
push and pull values along the stream.
import Pipes
import Pipes.Prelude as P
import Control.Monad
import Control.Monad.Identity

a :: Producer Int Identity ()
a = forM_ [1..10] yield

b :: Pipe Int Int Identity ()
b = forever $ do
x <- await
yield (x*2)
yield (x*3)
yield (x*4)

c :: Pipe Int Int Identity ()
c = forever $ do
x <- await
if (x `mod` 2) == 0
then yield x
else return ()

261

result :: [Int]
result = P.toList $ a >-> b >-> c

For example we could construct a “FizzBuzz” pipe.
{-# LANGUAGE MultiWayIf #-}

import Pipes
import qualified Pipes.Prelude as P

count :: Producer Integer IO ()
count = each [1..100]

fizzbuzz :: Pipe Integer String IO ()
fizzbuzz = do
n <- await
if | n `mod` 15 == 0 -> yield "FizzBuzz"

| n `mod` 5 == 0 -> yield "Fizz"
| n `mod` 3 == 0 -> yield "Buzz"
| otherwise -> return ()

fizzbuzz

main :: IO ()
main = runEffect $ count >-> fizzbuzz >-> P.stdoutLn

To continue with the degenerate case we constructed with Lazy IO, consider
than we can now compose and sequence deterministic actions over files without
having to worry about effect order.
import Pipes
import Pipes.Prelude as P
import System.IO

readF :: FilePath -> Producer String IO ()
readF file = do

lift $ putStrLn $ "Opened" ++ file
h <- lift $ openFile file ReadMode
fromHandle h
lift $ putStrLn $ "Closed" ++ file
lift $ hClose h

main :: IO ()
main = runEffect $ readF "foo.txt" >-> P.take 3 >-> stdoutLn

This is simple a sampling of the functionality of pipes. The documentation
for pipes is extensive and great deal of care has been taken make the library
extremely thorough. pipes is a shining example of an accessible yet category
theoretic driven design.

262

See: Pipes Tutorial

Safe Pipes

bracket :: MonadSafe m => Base m a -> (a -> Base m b) -> (a -> m c) -> m c

As a motivating example, ZeroMQ is a network messaging library that abstracts
over traditional Unix sockets to a variety of network topologies. Most notably
it isn’t designed to guarantee any sort of transactional guarantees for delivery
or recovery in case of errors so it’s necessary to design a layer on top of it to
provide the desired behavior at the application layer.
In Haskell we’d like to guarantee that if we’re polling on a socket we get messages
delivered in a timely fashion or consider the resource in an error state and recover
from it. Using pipes-safe we can manage the life cycle of lazy IO resources
and can safely handle failures, resource termination and finalization gracefully.
In other languages this kind of logic would be smeared across several places,
or put in some global context and prone to introduce errors and subtle race
conditions. Using pipes we instead get a nice tight abstraction designed exactly
to fit this kind of use case.
For instance now we can bracket the ZeroMQ socket creation and finalization
within the SafeT monad transformer which guarantees that after successful
message delivery we execute the pipes function as expected, or on failure we
halt the execution and finalize the socket.
import Pipes
import Pipes.Safe
import qualified Pipes.Prelude as P

import System.Timeout (timeout)
import Data.ByteString.Char8
import qualified System.ZMQ as ZMQ

data Opts = Opts
{ _addr :: String -- ^ ZMQ socket address
, _timeout :: Int -- ^ Time in milliseconds for socket timeout
}

recvTimeout :: Opts -> ZMQ.Socket a -> Producer ByteString (SafeT IO) ()
recvTimeout opts sock = do
body <- liftIO $ timeout (_timeout opts) (ZMQ.receive sock [])
case body of
Just msg -> do
liftIO $ ZMQ.send sock msg []
yield msg
recvTimeout opts sock

263

http://hackage.haskell.org/package/pipes-4.1.0/docs/Pipes-Tutorial.html

Nothing -> liftIO $ print "socket timed out"

collect :: ZMQ.Context
-> Opts
-> Producer ByteString (SafeT IO) ()

collect ctx opts = bracket zinit zclose (recvTimeout opts)
where
-- Initialize the socket
zinit = do
liftIO $ print "waiting for messages"
sock <- ZMQ.socket ctx ZMQ.Rep
ZMQ.bind sock (_addr opts)
return sock

-- On timeout or completion guarantee the socket get closed.
zclose sock = do
liftIO $ print "finalizing"
ZMQ.close sock

runZmq :: ZMQ.Context -> Opts -> IO ()
runZmq ctx opts = runSafeT $ runEffect $
collect ctx opts >-> P.take 10 >-> P.print

main :: IO ()
main = do
ctx <- ZMQ.init 1
let opts = Opts {_addr = "tcp://127.0.0.1:8000", _timeout = 1000000 }
runZmq ctx opts
ZMQ.term ctx

Conduits

await :: Monad m => ConduitM i o m (Maybe i)
yield :: Monad m => o -> ConduitM i o m ()
($$) :: Monad m => Source m a -> Sink a m b -> m b
(=$) :: Monad m => Conduit a m b -> Sink b m c -> Sink a m c

type Sink i = ConduitM i Void
type Source m o = ConduitM () o m ()
type Conduit i m o = ConduitM i o m ()

Conduits are conceptually similar though philosophically different approach to
the same problem of constant space deterministic resource handling for IO re-
sources.

264

The first initial difference is that await function now returns a Maybe which
allows different handling of termination. The composition operators are also
split into a connecting operator ($$) and a fusing operator (=$) for combining
Sources and Sink and a Conduit and a Sink respectively.
{-# LANGUAGE MultiWayIf #-}

import Data.Conduit
import Control.Monad.Trans
import qualified Data.Conduit.List as CL

source :: Source IO Int
source = CL.sourceList [1..100]

conduit :: Conduit Int IO String
conduit = do
val <- await
liftIO $ print val
case val of
Nothing -> return ()
Just n -> do
if | n `mod` 15 == 0 -> yield "FizzBuzz"

| n `mod` 5 == 0 -> yield "Fizz"
| n `mod` 3 == 0 -> yield "Buzz"
| otherwise -> return ()

conduit

sink :: Sink String IO ()
sink = CL.mapM_ putStrLn

main :: IO ()
main = source $$ conduit =$ sink

See: Conduit Overview

Data Formats

JSON

Aeson is library for efficient parsing and generating JSON. It is the canonical
JSON library for handling JSON.
decode :: FromJSON a => ByteString -> Maybe a
encode :: ToJSON a => a -> ByteString
eitherDecode :: FromJSON a => ByteString -> Either String a

265

https://www.fpcomplete.com/user/snoyberg/library-documentation/conduit-overview

fromJSON :: FromJSON a => Value -> Result a
toJSON :: ToJSON a => a -> Value

A point of some subtlety to beginners is that the return types for Aeson functions
are polymorphic in their return types meaning that the resulting type of
decode is specified only in the context of your programs use of the decode
function. So if you use decode in a point your program and bind it to a value
x and then use x as if it were and integer throughout the rest of your program,
Aeson will select the typeclass instance which parses the given input string into
a Haskell integer.

Value
Aeson uses several high performance data structures (Vector, Text, HashMap)
by default instead of the naive versions so typically using Aeson will require
that us import them and use OverloadedStrings when indexing into objects.
The underlying Aeson structure is called Value and encodes a recursive tree
structure that models the semantics of untyped JSON objects by mapping them
onto a large sum type which embodies all possible JSON values.
type Object = HashMap Text Value

type Array = Vector Value

-- | A JSON value represented as a Haskell value.
data Value
= Object !Object
| Array !Array
| String !Text
| Number !Scientific
| Bool !Bool
| Null

For instance the Value expansion of the following JSON blob:
{
"a": [1,2,3],
"b": 1

}

Is represented in Aeson as the Value:
Object

(fromList
[("a"
, Array (fromList [Number 1.0 , Number 2.0 , Number 3.0])
)

, ("b" , Number 1.0)
])

266

Let’s consider some larger examples, we’ll work with this contrived example
JSON:
{

"id": 1,
"name": "A green door",
"price": 12.50,
"tags": ["home", "green"],
"refs": {
"a": "red",
"b": "blue"

}
}

Unstructured JSON
In dynamic scripting languages it’s common to parse amorphous blobs of JSON
without any a priori structure and then handle validation problems by throwing
exceptions while traversing it. We can do the same using Aeson and the Maybe
monad.
{-# LANGUAGE OverloadedStrings #-}

import Data.Text
import Data.Aeson
import Data.Vector
import qualified Data.HashMap.Strict as M
import qualified Data.ByteString.Lazy as BL

-- Pull a key out of an JSON object.
(^?) :: Value -> Text -> Maybe Value
(^?) (Object obj) k = M.lookup k obj
(^?) _ _ = Nothing

-- Pull the ith value out of a JSON list.
ix :: Value -> Int -> Maybe Value
ix (Array arr) i = arr !? i
ix _ _ = Nothing

readJSON str = do
obj <- decode str
price <- obj ^? "price"
refs <- obj ^? "refs"
tags <- obj ^? "tags"
aref <- refs ^? "a"
tag1 <- tags `ix` 0
return (price, aref, tag1)

267

main :: IO ()
main = do
contents <- BL.readFile "example.json"
print $ readJSON contents

Structured JSON
This isn’t ideal since we’ve just smeared all the validation logic across our traver-
sal logic instead of separating concerns and handling validation in separate logic.
We’d like to describe the structure before-hand and the invalid case separately.
Using Generic also allows Haskell to automatically write the serializer and de-
serializer between our datatype and the JSON string based on the names of
record field names.
{-# LANGUAGE DeriveGeneric #-}

import Data.Text
import Data.Aeson
import GHC.Generics
import qualified Data.ByteString.Lazy as BL

import Control.Applicative

data Refs = Refs
{ a :: Text
, b :: Text
} deriving (Show,Generic)

data Data = Data
{ id :: Int
, name :: Text
, price :: Int
, tags :: [Text]
, refs :: Refs
} deriving (Show,Generic)

instance FromJSON Data
instance FromJSON Refs
instance ToJSON Data
instance ToJSON Refs

main :: IO ()
main = do
contents <- BL.readFile "example.json"
let Just dat = decode contents

268

print $ name dat
print $ a (refs dat)

Now we get our validated JSON wrapped up into a nicely typed Haskell ADT.
Data
{ id = 1
, name = "A green door"
, price = 12
, tags = ["home" , "green"]
, refs = Refs { a = "red" , b = "blue" }
}

The functions fromJSON and toJSON can be used to convert between this sum
type and regular Haskell types with.
data Result a = Error String | Success a

�: fromJSON (Bool True) :: Result Bool
Success True

�: fromJSON (Bool True) :: Result Double
Error "when expecting a Double, encountered Boolean instead"

As of 7.10.2 we can use the new -XDeriveAnyClass to automatically derive
instances of FromJSON and TOJSON without the need for standalone instance
declarations. These are implemented entirely in terms of the default methods
which use Generics under the hood.
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveAnyClass #-}

import Data.Text
import Data.Aeson
import GHC.Generics
import qualified Data.ByteString.Lazy as BL

data Refs = Refs
{ a :: Text
, b :: Text
} deriving (Show,Generic,FromJSON,ToJSON)

data Data = Data
{ id :: Int
, name :: Text
, price :: Int
, tags :: [Text]
, refs :: Refs
} deriving (Show,Generic,FromJSON,ToJSON)

269

main :: IO ()
main = do
contents <- BL.readFile "example.json"
let Just dat = decode contents
print $ name dat
print $ a (refs dat)
BL.putStrLn $ encode dat

Hand Written Instances
While it’s useful to use generics to derive instances, sometimes you actually want
more fine grained control over serialization and de serialization. So we fall back
on writing ToJSON and FromJSON instances manually. Using FromJSON we
can project into hashmap using the (.:) operator to extract keys. If the key
fails to exist the parser will abort with a key failure message. The ToJSON
instances can never fail and simply require us to pattern match on our custom
datatype and generate an appropriate value.
The law that the FromJSON and ToJSON classes should maintain is that encode
. deocde and decode . encode should map to the same object. Although in
practice there many times when we break this rule and especially if the serialize
or de serialize is one way.
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}

import Data.Text
import Data.Aeson
import Data.Maybe
import Data.Aeson.Types
import Control.Applicative
import qualified Data.ByteString.Lazy as BL

data Crew = Crew
{ name :: Text
, rank :: Rank
} deriving (Show)

data Rank
= Captain
| Ensign
| Lieutenant
deriving (Show)

-- Custom JSON Deserializer

instance FromJSON Crew where

270

parseJSON (Object o) = do
_name <- o .: "name"
_rank <- o .: "rank"
pure (Crew _name _rank)

instance FromJSON Rank where
parseJSON (String s) = case s of
"Captain" -> pure Captain
"Ensign" -> pure Ensign
"Liutenant" -> pure Ensign
_ -> typeMismatch "Could not parse Rank" (String s)

parseJSON x = typeMismatch "Expected String" x

-- Custom JSON Serializer

instance ToJSON Crew where
toJSON (Crew name rank) = object [

"name" .= name
, "rank" .= rank
]

instance ToJSON Rank where
toJSON Captain = String "Captain"
toJSON Ensign = String "Ensign"
toJSON Lieutenant = String "Liutenant"

roundTrips :: Crew -> Bool
roundTrips = isJust . go
where
go :: Crew -> Maybe Crew
go = decode . encode

picard :: Crew
picard = Crew { name = "Jean-Luc Picard", rank = Captain }

main :: IO ()
main = do
contents <- BL.readFile "crew.json"
let (res :: Maybe Crew) = decode contents
print res
print $ roundTrips picard

See: Aeson Documentation

271

http://hackage.haskell.org/package/aeson

Yaml

Yaml is a textual serialization format similar to JSON. It uses an indentation
sensitive structure to encode nested maps of keys and values. The Yaml interface
for Haskell is a precise copy of Data.Aeson
invoice: 34843
date : 2001-01-23
bill:

given : Chris
family : Dumars
address:

lines: |
458 Walkman Dr.
Suite #292

city : Royal Oak
state : MI
postal : 48046

Object
(fromList

[("invoice" , Number 34843.0)
, ("date" , String "2001-01-23")
, ("bill-to"
, Object

(fromList
[("address"
, Object

(fromList
[("state" , String "MI")
, ("lines" , String "458 Walkman Dr.\nSuite #292\n")
, ("city" , String "Royal Oak")
, ("postal" , Number 48046.0)
])

)
, ("family" , String "Dumars")
, ("given" , String "Chris")
])

)
])

{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE ScopedTypeVariables #-}

import Data.Yaml

272

import Data.Text (Text)
import qualified Data.ByteString as BL

import GHC.Generics

data Invoice = Invoice
{ invoice :: Int
, date :: Text
, bill :: Billing
} deriving (Show,Generic,FromJSON)

data Billing = Billing
{ address :: Address
, family :: Text
, given :: Text
} deriving (Show,Generic,FromJSON)

data Address = Address
{ lines :: Text
, city :: Text
, state :: Text
, postal :: Int
} deriving (Show,Generic,FromJSON)

main :: IO ()
main = do
contents <- BL.readFile "example.yaml"
let (res :: Either String Invoice) = decodeEither contents
case res of
Right val -> print val
Left err -> putStrLn err

Invoice
{ invoice = 34843
, date = "2001-01-23"
, bill =

Billing
{ address =

Address
{ lines = "458 Walkman Dr.\nSuite #292\n"
, city = "Royal Oak"
, state = "MI"
, postal = 48046
}

, family = "Dumars"
, given = "Chris"

273

}
}

CSV

Cassava is an efficient CSV parser library. We’ll work with this tiny snippet
from the iris dataset:
sepal_length,sepal_width,petal_length,petal_width,plant_class
5.1,3.5,1.4,0.2,Iris-setosa
5.0,2.0,3.5,1.0,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica

Unstructured CSV
Just like with Aeson if we really want to work with unstructured data the library
accommodates this.
import Data.Csv

import Text.Show.Pretty

import qualified Data.Vector as V
import qualified Data.ByteString.Lazy as BL

type ErrorMsg = String
type CsvData = V.Vector (V.Vector BL.ByteString)

example :: FilePath -> IO (Either ErrorMsg CsvData)
example fname = do
contents <- BL.readFile fname
return $ decode NoHeader contents

We see we get the nested set of stringy vectors:
[["sepal_length"
, "sepal_width"
, "petal_length"
, "petal_width"
, "plant_class"
]

, ["5.1" , "3.5" , "1.4" , "0.2" , "Iris-setosa"]
, ["5.0" , "2.0" , "3.5" , "1.0" , "Iris-versicolor"]
, ["6.3" , "3.3" , "6.0" , "2.5" , "Iris-virginica"]
]

274

Structured CSV
Just like with Aeson we can use Generic to automatically write the deserializer
between our CSV data and our custom datatype.
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveGeneric #-}

import Data.Csv
import GHC.Generics
import qualified Data.Vector as V
import qualified Data.ByteString.Lazy as BL

data Plant = Plant
{ sepal_length :: Double
, sepal_width :: Double
, petal_length :: Double
, petal_width :: Double
, plant_class :: String
} deriving (Generic, Show)

instance FromNamedRecord Plant
instance ToNamedRecord Plant

type ErrorMsg = String
type CsvData = (Header, V.Vector Plant)

parseCSV :: FilePath -> IO (Either ErrorMsg CsvData)
parseCSV fname = do
contents <- BL.readFile fname
return $ decodeByName contents

main = parseCSV "iris.csv" >>= print

And again we get a nice typed ADT as a result.
[Plant

{ sepal_length = 5.1
, sepal_width = 3.5
, petal_length = 1.4
, petal_width = 0.2
, plant_class = "Iris-setosa"
}

, Plant
{ sepal_length = 5.0
, sepal_width = 2.0
, petal_length = 3.5
, petal_width = 1.0

275

, plant_class = "Iris-versicolor"
}

, Plant
{ sepal_length = 6.3
, sepal_width = 3.3
, petal_length = 6.0
, petal_width = 2.5
, plant_class = "Iris-virginica"
}

]

Network & Web Programming

HTTP

Haskell has a variety of HTTP request and processing libraries. The simplest
and most flexible is the HTTP library.
{-# LANGUAGE OverloadedStrings #-}

import Network.HTTP.Types
import Network.HTTP.Client
import Control.Applicative
import Control.Concurrent.Async

type URL = String

get :: Manager -> URL -> IO Int
get m url = do
req <- parseUrl url
statusCode <$> responseStatus <$> httpNoBody req m

single :: IO Int
single = do
withManager defaultManagerSettings $ \m -> do
get m "http://haskell.org"

parallel :: IO [Int]
parallel = do
withManager defaultManagerSettings $ \m -> do
-- Fetch w3.org 10 times concurrently
let urls = replicate 10 "http://www.w3.org"
mapConcurrently (get m) urls

main :: IO ()

276

https://hackage.haskell.org/package/HTTP

main = do
print =<< single
print =<< parallel

Blaze

Blaze is an HTML combinator library that provides that capacity to build com-
posable bits of HTML programmatically. It doesn’t string templating libraries
like Hastache but instead provides an API for building up HTML documents
from logic where the format out of the output is generated procedurally.
For sequencing HTML elements the elements can either be sequenced in a monad
or with monoid operations.
{-# LANGUAGE OverloadedStrings #-}

module Html where

import Text.Blaze.Html5
import Text.Blaze.Html.Renderer.Text

import qualified Data.Text.Lazy.IO as T

example :: Html
example = do
h1 "First header"
p $ ul $ mconcat [li "First", li "Second"]

main :: IO ()
main = do
T.putStrLn $ renderHtml example

For custom datatypes we can implement the ToMarkupclass to convert between
Haskell data structures and HTML representation.
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE OverloadedStrings #-}

module Html where

import Text.Blaze.Html5
import Text.Blaze.Html.Renderer.Text

import qualified Data.Text.Lazy as T
import qualified Data.Text.Lazy.IO as T

data Employee = Employee

277

{ name :: T.Text
, age :: Int
}

instance ToMarkup Employee where
toMarkup Employee {..} = ul $ mconcat
[li (toHtml name)
, li (toHtml age)
]

fred :: Employee
fred = Employee { name = "Fred", age = 35 }

main :: IO ()
main = do
T.putStrLn $ renderHtml (toHtml fred)

Warp

Warp is a efficient web server, it’s the backed request engine behind several
of popular Haskell web frameworks. The internals have been finely tuned to
utilize Haskell’s concurrent runtime and is capable of handling a great deal of
concurrent requests.
{-# LANGUAGE OverloadedStrings #-}

import Network.Wai
import Network.Wai.Handler.Warp (run)
import Network.HTTP.Types

app :: Application
app req = return $ responseLBS status200 [] "Engage!"

main :: IO ()
main = run 8000 app

See: Warp

Scotty

Continuing with our trek through web libraries, Scotty is a web microframework
similar in principle to Flask in Python or Sinatra in Ruby.
{-# LANGUAGE OverloadedStrings #-}

import Web.Scotty

278

http://aosabook.org/en/posa/warp.html

import qualified Text.Blaze.Html5 as H
import Text.Blaze.Html5 (toHtml, Html)
import Text.Blaze.Html.Renderer.Text (renderHtml)

greet :: String -> Html
greet user = H.html $ do
H.head $
H.title "Welcome!"

H.body $ do
H.h1 "Greetings!"
H.p ("Hello " >> toHtml user >> "!")

app = do
get "/" $
text "Home Page"

get "/greet/:name" $ do
name <- param "name"
html $ renderHtml (greet name)

main :: IO ()
main = scotty 8000 app

Of importance to note is the Blaze library used here overloads do-notation but
is not itself a proper monad so the various laws and invariants that normally
apply for monads may break down or fail with error terms.
See: Making a Website with Haskell

Hastache

Hastache is string templating based on the “Mustache” style of encoding
metavariables with double braces {{ x }}. Hastache supports automatically
converting many Haskell types into strings and uses the efficient Text functions
for formatting.
The variables loaded into the template are specified in either a function mapping
variable names to printable MuType values. For instance using a function.
{-# LANGUAGE OverloadedStrings #-}

import Text.Hastache
import Text.Hastache.Context

import qualified Data.Text as T
import qualified Data.Text.Lazy as TL

279

http://adit.io/posts/2013-04-15-making-a-website-with-haskell.html

import qualified Data.Text.Lazy.IO as TL

import Data.Data

template :: FilePath -> MuContext IO -> IO TL.Text
template = hastacheFile defaultConfig

-- Function strContext
context :: String -> MuType IO
context "body" = MuVariable ("Hello World" :: TL.Text)
context "title" = MuVariable ("Haskell is lovely" :: TL.Text)
context _ = MuVariable ()

main :: IO ()
main = do
output <- template "templates/home.html" (mkStrContext context)
TL.putStrLn output

Or using Data-Typeable record and mkGenericContext, the Haskell field names
are converted into variable names.
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveDataTypeable #-}

import Text.Hastache
import Text.Hastache.Context

import qualified Data.Text.Lazy as TL
import qualified Data.Text.Lazy.IO as TL

import Data.Data

template :: FilePath -> MuContext IO -> IO TL.Text
template = hastacheFile defaultConfig

-- Record context
data TemplateCtx = TemplateCtx
{ body :: TL.Text
, title :: TL.Text
} deriving (Data, Typeable)

main :: IO ()
main = do
let ctx = TemplateCtx { body = "Hello", title = "Haskell" }
output <- template "templates/home.html" (mkGenericContext ctx)
TL.putStrLn output

280

The MuType and MuContext types can be parameterized by any monad or
transformer that implements MonadIO, not just IO.

Databases

Postgres

Postgres is an object-relational database management system with a rich exten-
sion of the SQL standard. Consider the following tables specified in DDL.
CREATE TABLE "books" (

"id" integer NOT NULL,
"title" text NOT NULL,
"author_id" integer,
"subject_id" integer,
Constraint "books_id_pkey" Primary Key ("id")

);

CREATE TABLE "authors" (
"id" integer NOT NULL,
"last_name" text,
"first_name" text,
Constraint "authors_pkey" Primary Key ("id")

);

The postgresql-simple bindings provide a thin wrapper to various libpq com-
mands to interact a Postgres server. These functions all take a Connection
object to the database instance and allow various bytestring queries to be sent
and result sets mapped into Haskell datatypes. There are four primary functions
for these interactions:
query_ :: FromRow r => Connection -> Query -> IO [r]
query :: (ToRow q, FromRow r) => Connection -> Query -> q -> IO [r]
execute :: ToRow q => Connection -> Query -> q -> IO Int64
execute_ :: Connection -> Query -> IO Int64

The result of the query function is a list of elements which implement the
FromRow typeclass. This can be many things including a single elemment
(Only), a list of tuples where each element implements FromField or a custom
datatype that itself implements FromRow. Under the hood the database bindings
inspects the Postgres oid objects and then attempts to convert them into the
Haskell datatype of the field being scrutinised. This can fail at runtime if the
types in the database don’t align with the expected types in the logic executing
the SQL query.

Tuples

281

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}

import qualified Data.Text as T
import qualified Database.PostgreSQL.Simple as SQL

creds :: SQL.ConnectInfo
creds = SQL.defaultConnectInfo
{ SQL.connectUser = "example"
, SQL.connectPassword = "example"
, SQL.connectDatabase = "booktown"
}

selectBooks :: SQL.Connection -> IO [(Int, T.Text, Int)]
selectBooks conn = SQL.query_ conn "select id, title, author_id from books"

main :: IO ()
main = do
conn <- SQL.connect creds
books <- selectBooks conn
print books

This yields the result set:
[(7808 , "The Shining" , 4156)
, (4513 , "Dune" , 1866)
, (4267 , "2001: A Space Odyssey" , 2001)
, (1608 , "The Cat in the Hat" , 1809)
, (1590 , "Bartholomew and the Oobleck" , 1809)
, (25908 , "Franklin in the Dark" , 15990)
, (1501 , "Goodnight Moon" , 2031)
, (190 , "Little Women" , 16)
, (1234 , "The Velveteen Rabbit" , 25041)
, (2038 , "Dynamic Anatomy" , 1644)
, (156 , "The Tell-Tale Heart" , 115)
, (41473 , "Programming Python" , 7805)
, (41477 , "Learning Python" , 7805)
, (41478 , "Perl Cookbook" , 7806)
, (41472 , "Practical PostgreSQL" , 1212)
]

Custom Types
{-# LANGUAGE OverloadedStrings #-}

import qualified Data.Text as T

282

import qualified Database.PostgreSQL.Simple as SQL
import Database.PostgreSQL.Simple.FromRow (FromRow(..), field)

data Book = Book
{ id_ :: Int
, title :: T.Text
, author_id :: Int
} deriving (Show)

instance FromRow Book where
fromRow = Book <$> field <*> field <*> field

creds :: SQL.ConnectInfo
creds = SQL.defaultConnectInfo
{ SQL.connectUser = "example"
, SQL.connectPassword = "example"
, SQL.connectDatabase = "booktown"
}

selectBooks :: SQL.Connection -> IO [Book]
selectBooks conn = SQL.query_ conn "select id, title, author_id from books limit 4"

main :: IO ()
main = do
conn <- SQL.connect creds
books <- selectBooks conn
print books

This yields the result set:
[Book { id_ = 7808 , title = "The Shining" , author_id = 4156 }
, Book { id_ = 4513 , title = "Dune" , author_id = 1866 }
, Book { id_ = 4267 , title = "2001: A Space Odyssey" , author_id = 2001 }
, Book { id_ = 1608 , title = "The Cat in the Hat" , author_id = 1809 }
]

Quasiquoter
As SQL expressions grow in complexity they often span multiple lines and
sometimes its useful to just drop down to a quasiquoter to embed the whole
query. The quoter here is pure, and just generates the Query object behind as
a ByteString.
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}

283

import qualified Data.Text as T

import qualified Database.PostgreSQL.Simple as SQL
import Database.PostgreSQL.Simple.SqlQQ (sql)
import Database.PostgreSQL.Simple.FromRow (FromRow(..), field)

data Book = Book
{ id_ :: Int
, title :: T.Text
, first_name :: T.Text
, last_name :: T.Text
} deriving (Show)

instance FromRow Book where
fromRow = Book <$> field <*> field <*> field <*> field

creds :: SQL.ConnectInfo
creds = SQL.defaultConnectInfo
{ SQL.connectUser = "example"
, SQL.connectPassword = "example"
, SQL.connectDatabase = "booktown"
}

selectBooks :: SQL.Query
selectBooks = [sql|
select
books.id,
books.title,
authors.first_name,
authors.last_name

from books
join authors on
authors.id = books.author_id

limit 5
|]

main :: IO ()
main = do
conn <- SQL.connect creds
(books :: [Book]) <- SQL.query_ conn selectBooks
print books

This yields the result set:
[Book

{ id_ = 41472
, title = "Practical PostgreSQL"

284

, first_name = "John"
, last_name = "Worsley"
}

, Book
{ id_ = 25908
, title = "Franklin in the Dark"
, first_name = "Paulette"
, last_name = "Bourgeois"
}

, Book
{ id_ = 1234
, title = "The Velveteen Rabbit"
, first_name = "Margery Williams"
, last_name = "Bianco"
}

, Book
{ id_ = 190
, title = "Little Women"
, first_name = "Louisa May"
, last_name = "Alcott"
}

]

Redis

Redis is an in-memory key-value store with support for a variety of datastruc-
tures. The Haskell exposure is exposed in a Redis monad which sequences a
set of redis commands taking ByteString arguments and then executes them
against a connection object.
{-# LANGUAGE OverloadedStrings #-}

import Database.Redis
import Data.ByteString.Char8

session :: Redis (Either Reply (Maybe ByteString))
session = do
set "hello" "haskell"
get "hello"

main :: IO ()
main = do
conn <- connect defaultConnectInfo
res <- runRedis conn session
print res

285

http://redis.io/commands

Redis is quite often used as a lightweight pubsub server, and the bindings inte-
grate with the Haskell concurrency primitives so that listeners can be sparked
and shared across threads off without blocking the main thread.
{-# LANGUAGE OverloadedStrings #-}

import Database.Redis

import Control.Monad
import Control.Monad.Trans
import Data.ByteString.Char8

import Control.Concurrent

subscriber :: Redis ()
subscriber =
pubSub (subscribe ["news"]) $ \msg -> do
print msg
return mempty

publisher :: Redis ()
publisher = forM_ [1..100] $ \n -> publish "news" (pack (show n))

-- connects to localhost:6379
main :: IO ()
main = do
conn1 <- connect defaultConnectInfo
conn2 <- connect defaultConnectInfo

-- Fork off a publisher
forkIO $ runRedis conn1 publisher

-- Subscribe for messages
runRedis conn2 subscriber

Acid State

Acid-state allows us to build a “database” for around our existing Haskell
datatypes that guarantees atomic transactions. For example, we can build a
simple key-value store wrapped around the Map type.
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE DeriveDataTypeable #-}

import Data.Acid

286

import Data.Typeable
import Data.SafeCopy
import Control.Monad.Reader (ask)

import qualified Data.Map as Map
import qualified Control.Monad.State as S

type Key = String
type Value = String

data Database = Database !(Map.Map Key Value)
deriving (Show, Ord, Eq, Typeable)

$(deriveSafeCopy 0 'base ''Database)

insertKey :: Key -> Value -> Update Database ()
insertKey key value

= do Database m <- S.get
S.put (Database (Map.insert key value m))

lookupKey :: Key -> Query Database (Maybe Value)
lookupKey key

= do Database m <- ask
return (Map.lookup key m)

deleteKey :: Key -> Update Database ()
deleteKey key

= do Database m <- S.get
S.put (Database (Map.delete key m))

allKeys :: Int -> Query Database [(Key, Value)]
allKeys limit

= do Database m <- ask
return $ take limit (Map.toList m)

$(makeAcidic ''Database ['insertKey, 'lookupKey, 'allKeys, 'deleteKey])

fixtures :: Map.Map String String
fixtures = Map.empty

test :: Key -> Value -> IO ()
test key val = do

database <- openLocalStateFrom "db/" (Database fixtures)
result <- update database (InsertKey key val)
result <- query database (AllKeys 10)
print result

287

GHC

This is a very advanced section, knowledge of GHC internals is rarely neces-
sary.

Block Diagram

The flow of code through GHC is a process of translation between several inter-
mediate languages and optimizations and transformations thereof. A common
pattern for many of these AST types is they are parametrized over a binder type
and at various stages the binders will be transformed, for example the Renamer
pass effectively translates the HsSyn datatype from a AST parametrized over
literal strings as the user enters into a HsSyn parameterized over qualified names
that includes modules and package names into a higher level Name type.

GHC Compiler

GHC Compiler Passes
• Parser/Frontend: An enormous AST translated from human syntax

that makes explicit possible all expressible syntax (declarations, do-
notation, where clauses, syntax extensions, template haskell, …). This is
unfiltered Haskell and it is enormous.

• Renamer takes syntax from the frontend and transforms all names to be
qualified (base:Prelude.map instead of map) and any shadowed names in
lambda binders transformed into unique names.

• Typechecker is a large pass that serves two purposes, first is the core
type bidirectional inference engine where most of the work happens and
the translation between the frontend Core syntax.

• Desugarer translates several higher level syntactic constructors
– where statements are turned into (possibly recursive) nested let

statements.
– Nested pattern matches are expanded out into splitting trees of case

statements.
– do-notation is expanded into explicit bind statements.
– Lots of others.

• Simplifier transforms many Core constructs into forms that are more
adaptable to compilation. For example let statements will be floated or
raised, pattern matches will simplified, inner loops will be pulled out and
transformed into more optimal forms. Non-intuitively the resulting may
actually be much more complex (for humans) after going through the
simplifier!

288

Figure 10:
289

• Stg pass translates the resulting Core into STG (Spineless Tagless G-
Machine) which effectively makes all laziness explicit and encodes the
thunks and update frames that will be handled during evaluation.

• Codegen/Cmm pass will then translate STG into Cmm (flavoured C–)
a simple imperative language that manifests the low-level implementation
details of runtime types. The runtime closure types and stack frames
are made explicit and low-level information about the data and code (ar-
ity, updatability, free variables, pointer layout) made manifest in the info
tables present on most constructs.

• Native Code The final pass will than translate the resulting code into
either LLVM or Assembly via either through GHC’s home built native
code generator (NCG) or the LLVM backend.

Information for each pass can dumped out via a rather large collection of flags.
The GHC internals are very accessible although some passes are somewhat easier
to understand than others. Most of the time -ddump-simpl and -ddump-stg
are sufficient to get an understanding of how the code will compile, unless of
course you’re dealing with very specialized optimizations or hacking on GHC
itself.

Flag Action
-ddump-parsed Frontend AST.
-ddump-rn Output of the rename pass.
-ddump-tc Output of the typechecker.
-ddump-splices Output of TemplateHaskell splices.
-ddump-types Typed AST representation.
-ddump-deriv Output of deriving instances.
-ddump-ds Output of the desugar pass.
-ddump-spec Output of specialisation pass.
-ddump-rules Output of applying rewrite rules.
-ddump-vect Output results of vectorize pass.
-ddump-simpl Ouptut of the SimplCore pass.
-ddump-inlinings Output of the inliner.
-ddump-cse Output of the common subexpression elimination pass.
-ddump-prep The CorePrep pass.
-ddump-stg The resulting STG.
-ddump-cmm The resulting Cmm.
-ddump-opt-cmm The resulting Cmm optimization pass.
-ddump-asm The final assembly generated.
-ddump-llvm The final LLVM IR generated.

Core

Core is the explicitly typed System-F family syntax through that all Haskell
constructs can be expressed in.

290

To inspect the core from GHCi we can invoke it using the following flags and the
following shell alias. We have explicitly disable the printing of certain metadata
and longform names to make the representation easier to read.
alias ghci-core="ghci -ddump-simpl -dsuppress-idinfo \
-dsuppress-coercions -dsuppress-type-applications \
-dsuppress-uniques -dsuppress-module-prefixes"

At the interactive prompt we can then explore the core representation interac-
tively:
$ ghci-core
�: let f x = x + 2 ; f :: Int -> Int

==================== Simplified expression ====================
returnIO
(: ((\ (x :: Int) -> + $fNumInt x (I# 2)) `cast` ...) ([]))

�: let f x = (x, x)

==================== Simplified expression ====================
returnIO (: ((\ (@ t) (x :: t) -> (x, x)) `cast` ...) ([]))

ghc-core is also very useful for looking at GHC’s compilation artifacts.
$ ghc-core --no-cast --no-asm

Alternatively the major stages of the compiler (parse tree, core, stg, cmm,
asm) can be manually outputted and inspected by passing several flags to the
compiler:
$ ghc -ddump-to-file -ddump-parsed -ddump-simpl -ddump-stg -ddump-cmm -ddump-asm

Reading Core
Core from GHC is roughly human readable, but it’s helpful to look at simple
human written examples to get the hang of what’s going on.
id :: a -> a
id x = x

id :: forall a. a -> a
id = \ (@ a) (x :: a) -> x

idInt :: GHC.Types.Int -> GHC.Types.Int
idInt = id @ GHC.Types.Int

compose :: (b -> c) -> (a -> b) -> a -> c
compose f g x = f (g x)

compose :: forall b c a. (b -> c) -> (a -> b) -> a -> c
compose = \ (@ b) (@ c) (@ a) (f1 :: b -> c) (g :: a -> b) (x1 :: a) -> f1 (g x1)

291

http://hackage.haskell.org/package/ghc-core

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

map :: forall a b. (a -> b) -> [a] -> [b]
map =
\ (@ a) (@ b) (f :: a -> b) (xs :: [a]) ->
case xs of _ {
[] -> [] @ b;
: y ys -> : @ b (f y) (map @ a @ b f ys)

}

Machine generated names are created for a lot of transformation of Core. Gen-
erally they consist of a prefix and unique identifier. The prefix is often pass
specific (i.e. ds for desugar generated name s) and sometimes specific names
are generated for specific automatically generated code. A list of the common
prefixes and their meaning is show below.

Prefix Description
$f... Dict-fun identifiers (from inst decls)
$dmop Default method for ‘op’
$wf Worker for function ‘f’
$sf Specialised version of f
$gdm Generated class method
$d Dictionary names
$s Specialized function name
$f Foreign export
$pnC n’th superclass selector for class C
T:C Tycon for dictionary for class C
D:C Data constructor for dictionary for class C
NTCo:T Coercion for newtype T to its underlying runtime representation

Of important note is that the Λ and � for type-level and value-level lambda
abstraction are represented by the same symbol (\) in core, which is a simpli-
fying detail of the GHC’s implementation but a source of some confusion when
starting.
-- System-F Notation
Λ b c a. � (f1 : b -> c) (g : a -> b) (x1 : a). f1 (g x1)

-- Haskell Core
\ (@ b) (@ c) (@ a) (f1 :: b -> c) (g :: a -> b) (x1 :: a) -> f1 (g x1)

The seq function has an intuitive implementation in the Core language.
x `seq` y

292

case x of _ {
__DEFAULT -> y

}

One particularly notable case of the Core desugaring process is that pattern
matching on overloaded numbers implicitly translates into equality test (i.e.
Eq).
f 0 = 1
f 1 = 2
f 2 = 3
f 3 = 4
f 4 = 5
f _ = 0

f :: forall a b. (Eq a, Num a, Num b) => a -> b
f =
\ (@ a)
(@ b)
($dEq :: Eq a)
($dNum :: Num a)
($dNum1 :: Num b)
(ds :: a) ->
case == $dEq ds (fromInteger $dNum (__integer 0)) of _ {
False ->
case == $dEq ds (fromInteger $dNum (__integer 1)) of _ {
False ->
case == $dEq ds (fromInteger $dNum (__integer 2)) of _ {
False ->
case == $dEq ds (fromInteger $dNum (__integer 3)) of _ {

False ->
case == $dEq ds (fromInteger $dNum (__integer 4)) of _ {
False -> fromInteger $dNum1 (__integer 0);
True -> fromInteger $dNum1 (__integer 5)

};
True -> fromInteger $dNum1 (__integer 4)

};
True -> fromInteger $dNum1 (__integer 3)

};
True -> fromInteger $dNum1 (__integer 2)

};
True -> fromInteger $dNum1 (__integer 1)

}

Of course, adding a concrete type signature changes the desugar just matching
on the unboxed values.

293

f :: Int -> Int
f =
\ (ds :: Int) ->
case ds of _ { I# ds1 ->
case ds1 of _ {
__DEFAULT -> I# 0;
0 -> I# 1;
1 -> I# 2;
2 -> I# 3;
3 -> I# 4;
4 -> I# 5

}
}

See:
• Core Spec
• Core By Example
• CoreSynType

Inliner

infixr 0 $

($):: (a -> b) -> a -> b
f $ x = f x

Having to enter a secondary closure every time we used ($) would introduce an
enormous overhead. Fortunately GHC has a pass to eliminate small functions
like this by simply replacing the function call with the body of its definition
at appropriate call-sites. There compiler contains a variety heuristics for de-
termining when this kind of substitution is appropriate and the potential costs
involved.
In addition to the automatic inliner, manual pragmas are provided for more
granular control over inlining. It’s important to note that naive inlining quite
often results in significantly worse performance and longer compilation times.
{-# INLINE func #-}
{-# INLINABLE func #-}
{-# NOINLINE func #-}

For example the contrived case where we apply a binary function to two argu-
ments. The function body is small and instead of entering another closure just
to apply the given function, we could in fact just inline the function application
at the call site.
{-# INLINE foo #-}
{-# NOINLINE bar #-}

294

https://github.com/ghc/ghc/blob/master/docs/core-spec/core-spec.pdf
http://alpmestan.com/2013/06/27/ghc-core-by-example-episode-1/
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/CoreSynType

foo :: (a -> b -> c) -> a -> b -> c
foo f x y = f x y

bar :: (a -> b -> c) -> a -> b -> c
bar f x y = f x y

test1 :: Int
test1 = foo (+) 10 20

test2 :: Int
test2 = bar (+) 20 30

Looking at the core, we can see that in test2 the function has indeed been
expanded at the call site and simply performs the addition there instead of
another indirection.
test1 :: Int
test1 =
let {
f :: Int -> Int -> Int
f = + $fNumInt } in

let {
x :: Int
x = I# 10 } in

let {
y :: Int
y = I# 20 } in

f x y

test2 :: Int
test2 = bar (+ $fNumInt) (I# 20) (I# 30)

Cases marked with NOINLINE generally indicate that the logic in the function is
using something like unsafePerformIO or some other unholy function. In these
cases naive inlining might duplicate effects at multiple call-sites throughout the
program which would be undesirable.
See:

• Secrets of the Glasgow Haskell Compiler inliner

Dictionaries

The Haskell language defines the notion of Typeclasses but is agnostic to how
they are implemented in a Haskell compiler. GHC’s particular implementation
uses a pass called the dictionary passing translation part of the elaboration phase
of the typechecker which translates Core functions with typeclass constraints

295

https://research.microsoft.com/en-us/um/people/simonpj/Papers/inlining/inline.pdf

into implicit parameters of which record-like structures containing the function
implementations are passed.
class Num a where
(+) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a

This class can be thought as the implementation equivalent to the following
parameterized record of functions.
data DNum a = DNum (a -> a -> a) (a -> a -> a) (a -> a)

add (DNum a m n) = a
mul (DNum a m n) = m
neg (DNum a m n) = n

numDInt :: DNum Int
numDInt = DNum plusInt timesInt negateInt

numDFloat :: DNum Float
numDFloat = DNum plusFloat timesFloat negateFloat

+ :: forall a. Num a => a -> a -> a
+ = \ (@ a) (tpl :: Num a) ->
case tpl of _ { D:Num tpl _ _ -> tpl }

* :: forall a. Num a => a -> a -> a
* = \ (@ a) (tpl :: Num a) ->
case tpl of _ { D:Num _ tpl _ -> tpl }

negate :: forall a. Num a => a -> a
negate = \ (@ a) (tpl :: Num a) ->
case tpl of _ { D:Num _ _ tpl -> tpl }

Num and Ord have simple translation but for monads with existential type vari-
ables in their signatures, the only way to represent the equivalent dictionary is
using RankNTypes. In addition a typeclass may also include superclasses which
would be included in the typeclass dictionary and parameterized over the same
arguments and an implicit superclass constructor function is created to pull out
functions from the superclass for the current monad.
data DMonad m = DMonad
{ bind :: forall a b. m a -> (a -> m b) -> m b
, return :: forall a. a -> m a
}

class (Functor t, Foldable t) => Traversable t where
traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
traverse f = sequenceA . fmap f

296

data DTraversable t = DTraversable
{ dFunctorTraversable :: DFunctor t -- superclass dictionary
, dFoldableTraversable :: DFoldable t -- superclass dictionary
, traverse :: forall a. Applicative f => (a -> f b) -> t a -> f (t b)
}

Indeed this is not that far from how GHC actually implements typeclasses. It
elaborates into projection functions and data constructors nearly identical to
this, and are expanded out to a dictionary argument for each typeclass constraint
of every polymorphic function.

Specialization

Overloading in Haskell is normally not entirely free by default, although with
an optimization called specialization it can be made to have zero cost at specific
points in the code where performance is crucial. This is not enabled by default
by virtue of the fact that GHC is not a whole-program optimizing compiler and
most optimizations (not all) stop at module boundaries.
GHC’s method of implementing typeclasses means that explicit dictionaries are
threaded around implicitly throughout the call sites. This is normally the most
natural way to implement this functionality since it preserves separate compi-
lation. A function can be compiled independently of where it is declared, not
recompiled at every point in the program where it’s called. The dictionary pass-
ing allows the caller to thread the implementation logic for the types to the
call-site where it can then be used throughout the body of the function.
Of course this means that in order to get at a specific typeclass function we
need to project (possibly multiple times) into the dictionary structure to pluck
out the function reference. The runtime makes this very cheap but not entirely
free.
Many C++ compilers or whole program optimizing compilers do the opposite
however, they explicitly specialize each and every function at the call site re-
placing the overloaded function with its type-specific implementation. We can
selectively enable this kind of behavior using class specialization.
module Specialize (spec, nonspec, f) where

{-# SPECIALIZE INLINE f :: Double -> Double -> Double #-}

f :: Floating a => a -> a -> a
f x y = exp (x + y) * exp (x + y)

nonspec :: Float
nonspec = f (10 :: Float) (20 :: Float)

297

spec :: Double
spec = f (10 :: Double) (20 :: Double)

Non-specialized
f :: forall a. Floating a => a -> a -> a
f =
\ (@ a) ($dFloating :: Floating a) (eta :: a) (eta1 :: a) ->
let {
a :: Fractional a
a = $p1Floating @ a $dFloating } in

let {
$dNum :: Num a
$dNum = $p1Fractional @ a a } in

* @ a
$dNum
(exp @ a $dFloating (+ @ a $dNum eta eta1))
(exp @ a $dFloating (+ @ a $dNum eta eta1))

In the specialized version the typeclass operations placed directly at the call site
and are simply unboxed arithmetic. This will map to a tight set of sequential
CPU instructions and is very likely the same code generated by C.
spec :: Double
spec = D# (*## (expDouble# 30.0) (expDouble# 30.0))

The non-specialized version has to project into the typeclass dictionary
($fFloatingFloat) 6 times and likely go through around 25 branches to
perform the same operation.
nonspec :: Float
nonspec =
f @ Float $fFloatingFloat (F# (__float 10.0)) (F# (__float 20.0))

For a tight loop over numeric types specializing at the call site can result in
orders of magnitude performance increase. Although the cost in compile-time
can often be non-trivial and when used function used at many call-sites this can
slow GHC’s simplifier pass to a crawl.
The best advice is profile and look for large uses of dictionary projection in tight
loops and then specialize and inline in these places.
Using the SPECIALISE INLINE pragma can unintentionally cause GHC to di-
verge if applied over a recursive function, it will try to specialize itself infinitely.

Static Compilation

On Linux, Haskell programs can be compiled into a standalone statically linked
binary that includes the runtime statically linked into it.

298

$ ghc -O2 --make -static -optc-static -optl-static -optl-pthread Example.hs
$ file Example
Example: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), statically linked, for GNU/Linux 2.6.32, not stripped
$ ldd Example

not a dynamic executable

In addition the file size of the resulting binary can be reduced by stripping
unneeded symbols.
$ strip Example

upx can additionally be used to compress the size of the executable down further.

Unboxed Types

The usual numerics types in Haskell can be considered to be a regular algebraic
datatype with special constructor arguments for their underlying unboxed val-
ues. Normally unboxed types and explicit unboxing are not used in normal
code, they are wired-in to the compiler.
data Int = I# Int#

data Integer
= S# Int# -- Small integers
| J# Int# ByteArray# -- Large GMP integers

data Float = F# Float#

Syntax Primitive Type
3# GHC.Prim.Int#
3## GHC.Prim.Word#
3.14# GHC.Prim.Float#
3.14## GHC.Prim.Double#
'c'# GHC.Prim.Char#
"Haskell"## GHC.Prim.Addr#

An unboxed type with kind # and will never unify a type variable of kind
*. Intuitively a type with kind * indicates a type with a uniform runtime
representation that can be used polymorphically.

• Lifted - Can contain a bottom term, represented by a pointer. (Int, Any,
(,))

• Unlited - Cannot contain a bottom term, represented by a value on the
stack. (Int#, (#, #))

{-# LANGUAGE BangPatterns, MagicHash, UnboxedTuples #-}

299

http://upx.sourceforge.net/

import GHC.Exts
import GHC.Prim

ex1 :: Bool
ex1 = gtChar# a# b#
where
!(C# a#) = 'a'
!(C# b#) = 'b'

ex2 :: Int
ex2 = I# (a# +# b#)
where
!(I# a#) = 1
!(I# b#) = 2

ex3 :: Int
ex3 = (I# (1# +# 2# *# 3# +# 4#))

ex4 :: (Int, Int)
ex4 = (I# (dataToTag# False), I# (dataToTag# True))

The function for integer arithmetic used in the Num typeclass for Int is just pat-
tern matching on this type to reveal the underlying unboxed value, performing
the builtin arithmetic and then performing the packing up into Int again.
plusInt :: Int -> Int -> Int
(I# x) `plusInt` (I# y) = I# (x +# y)

Where (+#) is a low level function built into GHC that maps to intrinsic integer
addition instruction for the CPU.
plusInt :: Int -> Int -> Int
plusInt a b = case a of {

(I# a_) -> case b of {
(I# b_) -> I# (+# a_ b_);

};
};

Runtime values in Haskell are by default represented uniformly by a boxed
StgClosure* struct which itself contains several payload values, which can
themselves either be pointers to other boxed values or to unboxed literal values
that fit within the system word size and are stored directly within the closure
in memory. The layout of the box is described by a bitmap in the header for
the closure which describes which values in the payload are either pointers or
non-pointers.
The unpackClosure# primop can be used to extract this information at runtime
by reading off the bitmap on the closure.

300

{-# LANGUAGE MagicHash, UnboxedTuples #-}
{-# OPTIONS_GHC -O1 #-}

module Main where

import GHC.Exts
import GHC.Base
import Foreign

data Size = Size
{ ptrs :: Int
, nptrs :: Int
, size :: Int
} deriving (Show)

unsafeSizeof :: a -> Size
unsafeSizeof a =
case unpackClosure# a of
(# x, ptrs, nptrs #) ->
let header = sizeOf (undefined :: Int)

ptr_c = I# (sizeofArray# ptrs)
nptr_c = I# (sizeofByteArray# nptrs) `div` sizeOf (undefined :: Word)
payload = I# (sizeofArray# ptrs +# sizeofByteArray# nptrs)
size = header + payload

in Size ptr_c nptr_c size

data A = A {-# UNPACK #-} !Int
data B = B Int

main :: IO ()
main = do
print (unsafeSizeof (A 42))
print (unsafeSizeof (B 42))

For example the datatype with the UNPACK pragma contains 1 non-pointer and
0 pointers.
data A = A {-# UNPACK #-} !Int
Size {ptrs = 0, nptrs = 1, size = 16}

While the default packed datatype contains 1 pointer and 0 non-pointers.
data B = B Int
Size {ptrs = 1, nptrs = 0, size = 9}

The closure representation for data constructors are also “tagged” at the runtime
with the tag of the specific constructor. This is however not a runtime type
tag since there is no way to recover the type from the tag as all constructor

301

simply use the sequence (0, 1, 2, …). The tag is used to discriminate cases in
pattern matching. The builtin dataToTag# can be used to pluck off the tag
for an arbitrary datatype. This is used in some cases when desugaring pattern
matches.
dataToTag# :: a -> Int#

For example:
-- data Bool = False | True
-- False ~ 0
-- True ~ 1

a :: (Int, Int)
a = (I# (dataToTag# False), I# (dataToTag# True))
-- (0, 1)

-- data Ordering = LT | EQ | GT
-- LT ~ 0
-- EQ ~ 1
-- GT ~ 2

b :: (Int, Int, Int)
b = (I# (dataToTag# LT), I# (dataToTag# EQ), I# (dataToTag# GT))
-- (0, 1, 2)

-- data Either a b = Left a | Right b
-- Left ~ 0
-- Right ~ 1

c :: (Int, Int)
c = (I# (dataToTag# (Left 0)), I# (dataToTag# (Right 1)))
-- (0, 1)

String literals included in the source code are also translated into several primop
operations. The Addr# type in Haskell stands for a static contagious buffer pre-
allocated on the Haskell heap that can hold a char* sequence. The operation
unpackCString# can scan this buffer and fold it up into a list of Chars from
inside Haskell.
unpackCString# :: Addr# -> [Char]

This is done in the early frontend desugarer phase, where literals are translated
into Addr# inline instead of giant chain of Cons’d characters. So our “Hello
World” translates into the following Core:
-- print "Hello World"
print (unpackCString# "Hello World"#)

See:

302

• Unboxed Values as First-Class Citizens

IO/ST

Both the IO and the ST monad have special state in the GHC runtime and
share a very similar implementation. Both ST a and IO a are passing around
an unboxed tuple of the form:
(# token, a #)

The RealWorld# token is “deeply magical” and doesn’t actually expand into
any code when compiled, but simply threaded around through every bind of
the IO or ST monad and has several properties of being unique and not being
able to be duplicated to ensure sequential IO actions are actually sequential.
unsafePerformIO can thought of as the unique operation which discards the
world token and plucks the a out, and is as the name implies not normally safe.
The PrimMonad abstracts over both these monads with an associated data family
for the world token or ST thread, and can be used to write operations that
generic over both ST and IO. This is used extensively inside of the vector package
to allow vector algorithms to be written generically either inside of IO or ST.
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}

import GHC.IO (IO(..))
import GHC.Prim (State#, RealWorld)
import GHC.Base (realWorld#)

instance Monad IO where
m >> k = m >>= \ _ -> k
return = returnIO
(>>=) = bindIO
fail s = failIO s

returnIO :: a -> IO a
returnIO x = IO $ \ s -> (# s, x #)

bindIO :: IO a -> (a -> IO b) -> IO b
bindIO (IO m) k = IO $ \ s -> case m s of (# new_s, a #) -> unIO (k a) new_s

thenIO :: IO a -> IO b -> IO b
thenIO (IO m) k = IO $ \ s -> case m s of (# new_s, _ #) -> unIO k new_s

unIO :: IO a -> (State# RealWorld -> (# State# RealWorld, a #))
unIO (IO a) = a

303

http://www.haskell.org/ghc/docs/papers/unboxed-values.ps.gz

{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE TypeFamilies #-}

import GHC.IO (IO(..))
import GHC.ST (ST(..))
import GHC.Prim (State#, RealWorld)
import GHC.Base (realWorld#)

class Monad m => PrimMonad m where
type PrimState m
primitive :: (State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a
internal :: m a -> State# (PrimState m) -> (# State# (PrimState m), a #)

instance PrimMonad IO where
type PrimState IO = RealWorld
primitive = IO
internal (IO p) = p

instance PrimMonad (ST s) where
type PrimState (ST s) = s
primitive = ST
internal (ST p) = p

See:
• Evaluation order and state tokens

ghc-heap-view

Through some dark runtime magic we can actually inspect the StgClosure
structures at runtime using various C and Cmm hacks to probe at the fields of
the structure’s representation to the runtime. The library ghc-heap-view can
be used to introspect such things, although there is really no use for this kind
of thing in everyday code it is very helpful when studying the GHC internals to
be able to inspect the runtime implementation details and get at the raw bits
underlying all Haskell types.
{-# LANGUAGE MagicHash #-}

import GHC.Exts
import GHC.HeapView

import System.Mem

main :: IO ()
main = do

304

https://www.fpcomplete.com/user/snoyberg/general-haskell/advanced/evaluation-order-and-state-tokens

-- Constr
clo <- getClosureData $! ([1,2,3] :: [Int])
print clo

-- Thunk
let thunk = id (1+1)
clo <- getClosureData thunk
print clo

-- evaluate to WHNF
thunk `seq` return ()

-- Indirection
clo <- getClosureData thunk
print clo

-- force garbage collection
performGC

-- Value
clo <- getClosureData thunk
print clo

A constructor (in this for cons constructor of list type) is represented by a
CONSTR closure that holds two pointers to the head and the tail. The integer in
the head argument is a static reference to the pre-allocated number and we see
a single static reference in the SRT (static reference table).
ConsClosure {
info = StgInfoTable {
ptrs = 2,
nptrs = 0,
tipe = CONSTR_2_0,
srtlen = 1

},
ptrArgs = [0x000000000074aba8/1,0x00007fca10504260/2],
dataArgs = [],
pkg = "ghc-prim",
modl = "GHC.Types",
name = ":"

}

We can also observe the evaluation and update of a thunk in process (id (1+1)
). The initial thunk is simply a thunk type with a pointer to the code to evaluate
it to a value.
ThunkClosure {
info = StgInfoTable {

305

ptrs = 0,
nptrs = 0,
tipe = THUNK,
srtlen = 9

},
ptrArgs = [],
dataArgs = []

}

When forced it is then evaluated and replaced with an Indirection closure which
points at the computed value.
BlackholeClosure {
info = StgInfoTable {
ptrs = 1,
nptrs = 0,
tipe = BLACKHOLE,
srtlen = 0

},
indirectee = 0x00007fca10511e88/1

}

When the copying garbage collector passes over the indirection, it then simply
replaces the indirection with a reference to the actual computed value computed
by indirectee so that future access does need to chase a pointer through the
indirection pointer to get the result.
ConsClosure {
info = StgInfoTable {
ptrs = 0,
nptrs = 1,
tipe = CONSTR_0_1,
srtlen = 0

},
ptrArgs = [],
dataArgs = [2],
pkg = "integer-gmp",
modl = "GHC.Integer.Type",
name = "S#"

}

STG

After being compiled into Core, a program is translated into a very similar
intermediate form known as STG (Spineless Tagless G-Machine) an abstract
machine model that makes all laziness explicit. The spineless indicates that
function applications in the language do not have a spine of applications of

306

functions are collapsed into a sequence of arguments. Currying is still present
in the semantics since arity information is stored and partially applied functions
will evaluate differently than saturated functions.
-- Spine
f x y z = App (App (App f x) y) z

-- Spineless
f x y z = App f [x, y, z]

All let statements in STG bind a name to a lambda form. A lambda form with
no arguments is a thunk, while a lambda-form with arguments indicates that a
closure is to be allocated that captures the variables explicitly mentioned.
Thunks themselves are either reentrant (\r) or updatable (\u) indicating that
the thunk and either yields a value to the stack or is allocated on the heap after
the update frame is evaluated All subsequent entry’s of the thunk will yield the
already-computed value without needing to redo the same work.
A lambda form also indicates the static reference table a collection of references
to static heap allocated values referred to by the body of the function.
For example turning on -ddump-stg we can see the expansion of the following
compose function.
-- Frontend
compose f g = \x -> f (g x)

-- Core
compose :: forall t t1 t2. (t1 -> t) -> (t2 -> t1) -> t2 -> t
compose =
\ (@ t) (@ t1) (@ t2) (f :: t1 -> t) (g :: t2 -> t1) (x :: t2) ->
f (g x)

-- STG
compose :: forall t t1 t2. (t1 -> t) -> (t2 -> t1) -> t2 -> t =

\r [f g x] let { sat :: t1 = \u [] g x; } in f sat;
SRT(compose): []

For a more sophisticated example, let’s trace the compilation of the factorial
function.
-- Frontend
fac :: Int -> Int -> Int
fac a 0 = a
fac a n = fac (n*a) (n-1)

-- Core
Rec {
fac :: Int -> Int -> Int
fac =
\ (a :: Int) (ds :: Int) ->

307

case ds of wild { I# ds1 ->
case ds1 of _ {
__DEFAULT ->
fac (* @ Int $fNumInt wild a) (- @ Int $fNumInt wild (I# 1));

0 -> a
}
}

end Rec }

-- STG
fac :: Int -> Int -> Int =

\r srt:(0,*bitmap*) [a ds]
case ds of wild {
I# ds1 ->

case ds1 of _ {
__DEFAULT ->

let {
sat :: Int =

\u srt:(1,*bitmap*) []
let { sat :: Int = NO_CCS I#! [1]; } in - $fNumInt wild sat; } in

let { sat :: Int = \u srt:(1,*bitmap*) [] * $fNumInt wild a;
} in fac sat sat;

0 -> a;
};

};
SRT(fac): [fac, $fNumInt]

Notice that the factorial function allocates two thunks (look for \u) inside of
the loop which are updated when computed. It also includes static references to
both itself (for recursion) and the dictionary for instance of Num typeclass over
the type Int.

Worker/Wrapper

With -O2 turned on GHC will perform a special optimization known as the
Worker-Wrapper transformation which will split the logic of the factorial func-
tion across two definitions, the worker will operate over stack unboxed allocated
machine integers which compiles into a tight inner loop while the wrapper calls
into the worker and collects the end result of the loop and packages it back up
into a boxed heap value. This can often be an order of of magnitude faster than
the naive implementation which needs to pack and unpack the boxed integers
on every iteration.
-- Worker
$wfac :: Int# -> Int# -> Int# =

\r [ww ww1]
case ww1 of ds {

308

__DEFAULT ->
case -# [ds 1] of sat {
__DEFAULT ->

case *# [ds ww] of sat { __DEFAULT -> $wfac sat sat; };
};

0 -> ww;
};

SRT($wfac): []

-- Wrapper
fac :: Int -> Int -> Int =

\r [w w1]
case w of _ {
I# ww ->

case w1 of _ {
I# ww1 -> case $wfac ww ww1 of ww2 { __DEFAULT -> I# [ww2]; };

};
};

SRT(fac): []

See:
• Writing Haskell as Fast as C

Z-Encoding

The Z-encoding is Haskell’s convention for generating names that are safely
represented in the compiler target language. Simply put the z-encoding renames
many symbolic characters into special sequences of the z character.

String Z-Encoded String
foo foo
z zz
Z ZZ
. .
() Z0T
(,) Z2T
(,,) Z3T
_ zu
(ZL
) ZR
: ZC
zh
. zi
(#,#) Z2H
(->) ZLzmzgZR

309

https://donsbot.wordpress.com/2008/05/06/write-haskell-as-fast-as-c-exploiting-strictness-laziness-and-recursion/

String Z-Encoded String

In this way we don’t have to generate unique unidentifiable names for character
rich names and can simply have a straightforward way to translate them into
something unique but identifiable.
So for some example names from GHC generated code:

Z-Encoded String Decoded String
ZCMain_main_closure :Main_main_closure
base_GHCziBase_map_closure base_GHC.Base_map_closure
base_GHCziInt_I32zh_con_info base_GHC.Int_I32#_con_info
ghczmprim_GHCziTuple_Z3T_con_info ghc-prim_GHC.Tuple_(,,)_con_in
ghczmprim_GHCziTypes_ZC_con_info ghc-prim_GHC.Types_:_con_info

Cmm

Cmm is GHC’s complex internal intermediate representation that maps directly
onto the generated code for the compiler target. Cmm code code generated from
Haskell is CPS-converted, all functions never return a value, they simply call
the next frame in the continuation stack. All evaluation of functions proceed
by indirectly jumping to a code object with its arguments placed on the stack
by the caller.
This is drastically different than C’s evaluation model, where are placed on the
stack and a function yields a value to the stack after it returns.
There are several common suffixes you’ll see used in all closures and function
names:

Symbol Meaning
0 No argument
p Garage Collected Pointer
n Word-sized non-pointer
l 64-bit non-pointer (long)
v Void
f Float
d Double
v16 16-byte vector
v32 32-byte vector
v64 64-byte vector

Cmm Registers

310

There are 10 registers that described in the machine model. Sp is the pointer
to top of the stack, SpLim is the pointer to last element in the stack. Hp is
the heap pointer, used for allocation and garbage collection with HpLim the
current heap limit.
The R1 register always holds the active closure, and subsequent registers are
arguments passed in registers. Functions with more than 10 values spill into
memory.

• Sp
• SpLim
• Hp
• HpLim
• HpAlloc
• R1
• R2
• R3
• R4
• R5
• R6
• R7
• R8
• R9
• R10

Examples
To understand Cmm it is useful to look at the code generated by the equivalent
Haskell and slowly understand the equivalence and mechanical translation maps
one to the other.
There are generally two parts to every Cmm definition, the info table and the
entry code. The info table maps directly StgInfoTable struct and contains
various fields related to the type of the closure, its payload, and references. The
code objects are basic blocks of generated code that correspond to the logic of
the Haskell function/constructor.
For the simplest example consider a constant static constructor. Simply a func-
tion which yields the Unit value. In this case the function is simply a constructor
with no payload, and is statically allocated.
Haskell:
unit = ()

Cmm:
[section "data" {

unit_closure:
const ()_static_info;

}]

311

Consider a static constructor with an argument.
Haskell:
con :: Maybe ()
con = Just ()

Cmm:
[section "data" {

con_closure:
const Just_static_info;
const ()_closure+1;
const 1;

}]

Consider a literal constant. This is a static value.
Haskell:
lit :: Int
lit = 1

Cmm:
[section "data" {

lit_closure:
const I#_static_info;
const 1;

}]

Consider the identity function.
Haskell:
id x = x

Cmm:
[section "data" {

id_closure:
const id_info;

},
id_info()

{ label: id_info
rep:HeapRep static { Fun {arity: 1 fun_type: ArgSpec 5} }

}
ch1:

R1 = R2;
jump stg_ap_0_fast; // [R1]

}]

Consider the constant function.
Haskell:

312

constant x y = x

Cmm:
[section "data" {

constant_closure:
const constant_info;

},
constant_info()

{ label: constant_info
rep:HeapRep static { Fun {arity: 2 fun_type: ArgSpec 12} }

}
cgT:

R1 = R2;
jump stg_ap_0_fast; // [R1]

}]

Consider a function where application of a function (of unknown arity) occurs.
Haskell:
compose f g x = f (g x)

Cmm:
[section "data" {

compose_closure:
const compose_info;

},
compose_info()

{ label: compose_info
rep:HeapRep static { Fun {arity: 3 fun_type: ArgSpec 20} }

}
ch9:

Hp = Hp + 32;
if (Hp > HpLim) goto chd;
I64[Hp - 24] = stg_ap_2_upd_info;
I64[Hp - 8] = R3;
I64[Hp + 0] = R4;
R1 = R2;
R2 = Hp - 24;
jump stg_ap_p_fast; // [R1, R2]

che:
R1 = compose_closure;
jump stg_gc_fun; // [R1, R4, R3, R2]

chd:
HpAlloc = 32;
goto che;

}]

313

Consider a function which branches using pattern matching:
Haskell:
match :: Either a a -> a
match x = case x of
Left a -> a
Right b -> b

Cmm:
[section "data" {

match_closure:
const match_info;

},
sio_ret()

{ label: sio_info
rep:StackRep []

}
ciL:

_ciM::I64 = R1 & 7;
if (_ciM::I64 >= 2) goto ciN;
R1 = I64[R1 + 7];
Sp = Sp + 8;
jump stg_ap_0_fast; // [R1]

ciN:
R1 = I64[R1 + 6];
Sp = Sp + 8;
jump stg_ap_0_fast; // [R1]

},
match_info()

{ label: match_info
rep:HeapRep static { Fun {arity: 1 fun_type: ArgSpec 5} }

}
ciP:

if (Sp - 8 < SpLim) goto ciR;
R1 = R2;
I64[Sp - 8] = sio_info;
Sp = Sp - 8;
if (R1 & 7 != 0) goto ciU;
jump I64[R1]; // [R1]

ciR:
R1 = match_closure;
jump stg_gc_fun; // [R1, R2]

ciU: jump sio_info; // [R1]
}]

Macros

314

Cmm itself uses many macros to stand for various constructs, many of which are
defined in an external C header file. A short reference for the common types:

Cmm Description
C_ char
D_ double
F_ float
W_ word
P_ garbage collected pointer
I_ int
L_ long
FN_ function pointer (no arguments)
EF_ extern function pointer
I8 8-bit integer
I16 16-bit integer
I32 32-bit integer
I64 64-bit integer

Many of the predefined closures (stg_ap_p_fast, etc) are themselves mechani-
cally generated and more or less share the same form (a giant switch statement
on closure type, update frame, stack adjustment). Inside of GHC is a file named
GenApply.hs that generates most of these functions. See the Gist link in the
reading section for the current source file that GHC generates. For example the
output for stg_ap_p_fast.
stg_ap_p_fast
{ W_ info;

W_ arity;
if (GETTAG(R1)==1) {

Sp_adj(0);
jump %GET_ENTRY(R1-1) [R1,R2];

}
if (Sp - WDS(2) < SpLim) {

Sp_adj(-2);
W_[Sp+WDS(1)] = R2;
Sp(0) = stg_ap_p_info;
jump __stg_gc_enter_1 [R1];

}
R1 = UNTAG(R1);
info = %GET_STD_INFO(R1);
switch [INVALID_OBJECT .. N_CLOSURE_TYPES] (TO_W_(%INFO_TYPE(info))) {

case FUN,
FUN_1_0,
FUN_0_1,
FUN_2_0,

315

FUN_1_1,
FUN_0_2,
FUN_STATIC: {
arity = TO_W_(StgFunInfoExtra_arity(%GET_FUN_INFO(R1)));
ASSERT(arity > 0);
if (arity == 1) {

Sp_adj(0);
R1 = R1 + 1;
jump %GET_ENTRY(UNTAG(R1)) [R1,R2];

} else {
Sp_adj(-2);
W_[Sp+WDS(1)] = R2;
if (arity < 8) {

R1 = R1 + arity;
}
BUILD_PAP(1,1,stg_ap_p_info,FUN);

}
}
default: {

Sp_adj(-2);
W_[Sp+WDS(1)] = R2;
jump RET_LBL(stg_ap_p) [];

}
}

}

Handwritten Cmm can be included in a module manually by first compiling it
through GHC into an object and then using a special FFI invocation.
#include "Cmm.h"

factorial {
entry:

W_ n ;
W_ acc;
n = R1 ;
acc = n ;
n = n - 1 ;

for:
if (n <= 0) {

RET_N(acc);
} else {

acc = acc * n ;
n = n - 1 ;
goto for ;

}

316

RET_N(0);
}

-- ghc -c factorial.cmm -o factorial.o
-- ghc factorial.o Example.hs -o Example

{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnliftedFFITypes #-}
{-# LANGUAGE GHCForeignImportPrim #-}
{-# LANGUAGE ForeignFunctionInterface #-}

module Main where

import GHC.Prim
import GHC.Word

foreign import prim "factorial" factorial_cmm :: Word# -> Word#

factorial :: Word64 -> Word64
factorial (W64# n) = W64# (factorial_cmm n)

main :: IO ()
main = print (factorial 5)

See:
• CmmType
• MiscClosures
• StgCmmArgRep

Cmm Runtime:
• Apply.cmm
• StgStdThunks.cmm
• StgMiscClosures.cmm
• PrimOps.cmm
• Updates.cmm
• Precompiled Closures (Autogenerated Output)

Optimization Hacks

Tables Next to Code
GHC will place the info table for a toplevel closure directly next to the entry-
code for the objects in memory such that the fields from the info table can be
accessed by pointer arithmetic on the function pointer to the code itself. Not
performing this optimization would involve chasing through one more pointer

317

http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/CmmType
https://github.com/ghc/ghc/blob/master/includes/stg/MiscClosures.h
https://github.com/ghc/ghc/blob/master/compiler/codeGen/StgCmmArgRep.hs
https://github.com/ghc/ghc/blob/master/rts/Apply.cmm
https://github.com/ghc/ghc/blob/master/rts/StgStdThunks.cmm
https://github.com/ghc/ghc/blob/master/rts/StgMiscClosures.cmm
https://github.com/ghc/ghc/blob/master/rts/PrimOps.cmm
https://github.com/ghc/ghc/blob/master/rts/Updates.cmm
https://gist.github.com/sdiehl/e5c9daab7a6d1da0ede7

to get to the info table. Given how often info-tables are accessed using the
tables-next-to-code optimization results in a tractable speedup.

Pointer Tagging
Depending on the type of the closure involved, GHC will utilize the last few bits
in a pointer to the closure to store information that can be read off from the bits
of pointer itself before jumping into or access the info tables. For thunks this can
be information like whether it is evaluated to WHNF or not, for constructors it
contains the constructor tag (if it fits) to avoid an info table lookup.
Depending on the architecture the tag bits are either the last 2 or 3 bits of a
pointer.
// 32 bit arch
TAG_BITS = 2

// 64-bit arch
TAG_BITS = 3

These occur in Cmm most frequently via the following macro definitions:
#define TAG_MASK ((1 << TAG_BITS) - 1)
#define UNTAG(p) (p & ~TAG_MASK)
#define GETTAG(p) (p & TAG_MASK)

So for instance in many of the precompiled functions, there will be a test for
whether the active closure R1 is already evaluated.
if (GETTAG(R1)==1) {

Sp_adj(0);
jump %GET_ENTRY(R1-1) [R1,R2];

}

Interface Files

During compilation GHC will produce interface files for each module that are
the binary encoding of specific symbols (functions, typeclasses, etc) exported by
that modules as well as any package dependencies it itself depends on. This is ef-
fectively the serialized form of the ModGuts structure used internally in the com-
piler. The internal structure of this file can be dumped using the --show-iface
flag. The precise structure changes between versions of GHC.
$ ghc --show-iface let.hi
Magic: Wanted 33214052,

got 33214052
Version: Wanted [7, 0, 8, 4],

got [7, 0, 8, 4]
Way: Wanted [],

318

got []
interface main:Main 7084
interface hash: 1991c3e0edf3e849aeb53783fb616df2
ABI hash: 0b7173fb01d2226a2e61df72371034ee
export-list hash: 0f26147773230f50ea3b06fe20c9c66c
orphan hash: 693e9af84d3dfcc71e640e005bdc5e2e
flag hash: 9b3dfba8e3209c5b5c132a214b6b9bd3
used TH splices: False
where

exports:
Main.main

module dependencies:
package dependencies: base* ghc-prim integer-gmp
orphans: base:GHC.Base base:GHC.Float base:GHC.Real
family instance modules: base:Data.Either base:Data.Monoid

base:Data.Type.Equality base:GHC.Generics
import -/ base:GHC.Num 5e7786970581cacc802bf850d458a30b
import -/ base:Prelude 74043f272d60acec1777d3461cfe5ef4
import -/ base:System.IO cadd0efb01c47ddd8f52d750739fdbdf
import -/ ghc-prim:GHC.Types dcba736fa3dfba12d307ab18354845d2
4cfa03293a8356d627c0c5fec26936e2
main :: GHC.Types.IO ()

vectorised variables:
vectorised tycons:
vectorised reused tycons:
parallel variables:
parallel tycons:
trusted: safe-inferred
require own pkg trusted: False

Profiling

EKG

EKG is a monitoring tool that can monitor various aspect of GHC’s runtime
alongside an active process. The interface for the output is viewable within a
browser interface. The monitoring process is forked off (in a system thread)
from the main process.
{-# Language OverloadedStrings #-}

import Control.Monad
import System.Remote.Monitoring

main :: IO ()

319

main = do
ekg <- forkServer "localhost" 8000
putStrLn "Started server on http://localhost:8000"
forever $ getLine >>= putStrLn

Figure 11:

RTS Profiling

The GHC runtime system can be asked to dump information about allocations
and percentage of wall time spent in various portions of the runtime system.
$./program +RTS -s

1,939,784 bytes allocated in the heap
11,160 bytes copied during GC
44,416 bytes maximum residency (2 sample(s))
21,120 bytes maximum slop

1 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 2 colls, 0 par 0.00s 0.00s 0.0000s 0.0000s
Gen 1 2 colls, 0 par 0.00s 0.00s 0.0002s 0.0003s

INIT time 0.00s (0.00s elapsed)
MUT time 0.00s (0.01s elapsed)

320

GC time 0.00s (0.00s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 0.01s (0.01s elapsed)

%GC time 5.0% (7.1% elapsed)

Alloc rate 398,112,898 bytes per MUT second

Productivity 91.4% of total user, 128.8% of total elapsed

Productivity indicates the amount of time spent during execution compared to
the time spent garbage collecting. Well tuned CPU bound programs are often
in the 90-99% range of productivity range.
In addition individual function profiling information can be generated by com-
piling the program with -prof flag. The resulting information is outputted to
a .prof file of the same name as the module. This is useful for tracking down
hotspots in the program.
$ ghc -O2 program.hs -prof -auto-all
$./program +RTS -p
$ cat program.prof

Mon Oct 27 23:00 2014 Time and Allocation Profiling Report (Final)

program +RTS -p -RTS

total time = 0.01 secs (7 ticks @ 1000 us, 1 processor)
total alloc = 1,937,336 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

CAF Main 100.0 97.2
CAF GHC.IO.Handle.FD 0.0 1.8

individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 42 0 0.0 0.7 100.0 100.0
CAF Main 83 0 100.0 97.2 100.0 97.2
CAF GHC.IO.Encoding 78 0 0.0 0.1 0.0 0.1
CAF GHC.IO.Handle.FD 77 0 0.0 1.8 0.0 1.8
CAF GHC.Conc.Signal 74 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 69 0 0.0 0.0 0.0 0.0
CAF GHC.Show 60 0 0.0 0.0 0.0 0.0

321

Languages

unbound

Several libraries exist to mechanize the process of writing name capture and
substitution, since it is largely mechanical. Probably the most robust is the
unbound library. For example we can implement the infer function for a small
Hindley-Milner system over a simple typed lambda calculus without having to
write the name capture and substitution mechanics ourselves.
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}

module Infer where

import Data.String
import Data.Map (Map)
import Control.Monad.Error
import qualified Data.Map as Map

import qualified Unbound.LocallyNameless as NL
import Unbound.LocallyNameless hiding (Subst, compose)

data Type
= TVar (Name Type)
| TArr Type Type
deriving (Show)

data Expr
= Var (Name Expr)
| Lam (Bind (Name Expr) Expr)
| App Expr Expr
| Let (Bind (Name Expr) Expr)
deriving (Show)

$(derive [''Type, ''Expr])

instance IsString Expr where
fromString = Var . fromString

instance IsString Type where
fromString = TVar . fromString

instance IsString (Name Expr) where

322

fromString = string2Name
instance IsString (Name Type) where

fromString = string2Name

instance Eq Type where
(==) = eqType

eqType :: Type -> Type -> Bool
eqType (TVar v1) (TVar v2) = v1 == v2
eqType _ _ = False

uvar :: String -> Expr
uvar x = Var (s2n x)

tvar :: String -> Type
tvar x = TVar (s2n x)

instance Alpha Type
instance Alpha Expr

instance NL.Subst Type Type where
isvar (TVar v) = Just (SubstName v)
isvar _ = Nothing

instance NL.Subst Expr Expr where
isvar (Var v) = Just (SubstName v)
isvar _ = Nothing

instance NL.Subst Expr Type where

data TypeError
= UnboundVariable (Name Expr)
| GenericTypeError
deriving (Show)

instance Error TypeError where
noMsg = GenericTypeError

type Env = Map (Name Expr) Type
type Constraint = (Type, Type)
type Infer = ErrorT TypeError FreshM

empty :: Env
empty = Map.empty

323

freshtv :: Infer Type
freshtv = do
x <- fresh "_t"
return $ TVar x

infer :: Env -> Expr -> Infer (Type, [Constraint])
infer env expr = case expr of

Lam b -> do
(n,e) <- unbind b
tv <- freshtv
let env' = Map.insert n tv env
(t, cs) <- infer env' e
return (TArr tv t, cs)

App e1 e2 -> do
(t1, cs1) <- infer env e1
(t2, cs2) <- infer env e2
tv <- freshtv
return (tv, (t1, TArr t2 tv) : cs1 ++ cs2)

Var n -> do
case Map.lookup n env of

Nothing -> throwError $ UnboundVariable n
Just t -> return (t, [])

Let b -> do
(n, e) <- unbind b
(tBody, csBody) <- infer env e
let env' = Map.insert n tBody env
(t, cs) <- infer env' e
return (t, cs ++ csBody)

unbound-generics

Recently unbound was ported to use GHC.Generics instead of Template Haskell.
The API is effectively the same, so for example a simple lambda calculus could
be written as:
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MultiParamTypeClasses #-}

324

{-# LANGUAGE ScopedTypeVariables #-}

module LC where

import Unbound.Generics.LocallyNameless
import Unbound.Generics.LocallyNameless.Internal.Fold (toListOf)

import GHC.Generics

import Data.Typeable (Typeable)
import Data.Set as S

import Control.Monad.Reader (Reader, runReader)

data Exp
= Var (Name Exp)
| Lam (Bind (Name Exp) Exp)
| App Exp Exp
deriving (Show, Generic, Typeable)

instance Alpha Exp

instance Subst Exp Exp where
isvar (Var x) = Just (SubstName x)
isvar _ = Nothing

fvSet :: (Alpha a, Typeable b) => a -> S.Set (Name b)
fvSet = S.fromList . toListOf fv

type M a = FreshM a

(=~) :: Exp -> Exp -> M Bool
e1 =~ e2 | e1 `aeq` e2 = return True
e1 =~ e2 = do

e1' <- red e1
e2' <- red e2
if e1' `aeq` e1 && e2' `aeq` e2
then return False
else e1' =~ e2'

-- Reduction
red :: Exp -> M Exp
red (App e1 e2) = do
e1' <- red e1
e2' <- red e2
case e1' of

325

Lam bnd -> do
(x, e1'') <- unbind bnd
return $ subst x e2' e1''

otherwise -> return $ App e1' e2'
red (Lam bnd) = do

(x, e) <- unbind bnd
e' <- red e
case e of
App e1 (Var y) | y == x && x `S.notMember` fvSet e1 -> return e1
otherwise -> return (Lam (bind x e'))

red (Var x) = return $ (Var x)

x :: Name Exp
x = string2Name "x"

y :: Name Exp
y = string2Name "y"

z :: Name Exp
z = string2Name "z"

s :: Name Exp
s = string2Name "s"

lam :: Name Exp -> Exp -> Exp
lam x y = Lam (bind x y)

zero = lam s (lam z (Var z))
one = lam s (lam z (App (Var s) (Var z)))
two = lam s (lam z (App (Var s) (App (Var s) (Var z))))
three = lam s (lam z (App (Var s) (App (Var s) (App (Var s) (Var z)))))

plus = lam x (lam y (lam s (lam z (App (App (Var x) (Var s)) (App (App (Var y) (Var s)) (Var z))))))

true = lam x (lam y (Var x))
false = lam x (lam y (Var y))
if_ x y z = (App (App x y) z)

main :: IO ()
main = do
print $ lam x (Var x) `aeq` lam y (Var y)
print $ not (lam x (Var y) `aeq` lam x (Var x))
print $ lam x (App (lam y (Var x)) (lam y (Var y))) =~ (lam y (Var y))
print $ lam x (App (Var y) (Var x)) =~ Var y
print $ if_ true (Var x) (Var y) =~ Var x

326

print $ if_ false (Var x) (Var y) =~ Var y
print $ App (App plus one) two =~ three

See:
• unbound-generics

llvm-general

LLVM is a library for generating machine code. The llvm-general bindings
provide a way to model, compile and execute LLVM bytecode from within the
Haskell runtime.
module Standalone where

-- Pretty Printer
import LLVM.General.Pretty (ppllvm)

-- AST
import qualified LLVM.General.AST as AST
import qualified LLVM.General.AST.Linkage as Linkage
import qualified LLVM.General.AST.Visibility as Visibility
import qualified LLVM.General.AST.CallingConvention as Convention

import Data.Text.Lazy.IO as TIO

astModule :: AST.Module
astModule = AST.Module

{ AST.moduleName = "example-llvm-module"
, AST.moduleDataLayout = Nothing
, AST.moduleTargetTriple = Nothing
, AST.moduleDefinitions =

[AST.GlobalDefinition
(AST.Function

Linkage.External
Visibility.Default
Nothing
Convention.C
[]
(AST.IntegerType 8)
(AST.Name "f")
([AST.Parameter (AST.IntegerType 8) (AST.Name "x") []], False)
[]
Nothing
Nothing
0
Nothing

327

https://github.com/lambdageek/unbound-generics

Nothing
[AST.BasicBlock

(AST.Name "entry")
[]
(AST.Do

(AST.Ret
(Just

(AST.LocalReference
(AST.IntegerType 8)
(AST.Name "x")

)
)
[]

)
)

]
)

]
}

main :: IO ()
main = TIO.putStrLn (ppllvm astModule)

Generates the following textual LLVM IR which can them be executed using the
JIT in the llvm-general package or passed to the various llvm commandline
utilities.
; ModuleID = 'example-llvm-module'

define i8 @f(i8 %x){
entry:
ret i8 %x

}

See:
• Minimal Example of LLVM Haskell JIT
• Implementing a JIT Compiled Language with Haskell and LLVM

pretty

Pretty printer combinators compose logic to print strings.

Combinators
<> Concatenation
<+> Spaced concatenation
char Renders a character as a Doc

328

https://github.com/sdiehl/llvm-tutorial-standalone
http://www.stephendiehl.com/llvm/

Combinators
text Renders a string as a Doc

{-# LANGUAGE FlexibleInstances #-}

import Text.PrettyPrint
import Text.Show.Pretty (ppShow)

parensIf :: Bool -> Doc -> Doc
parensIf True = parens
parensIf False = id

type Name = String

data Expr
= Var String
| Lit Ground
| App Expr Expr
| Lam Name Expr
deriving (Eq, Show)

data Ground
= LInt Int
| LBool Bool
deriving (Show, Eq, Ord)

class Pretty p where
ppr :: Int -> p -> Doc

instance Pretty String where
ppr _ x = text x

instance Pretty Expr where
ppr _ (Var x) = text x
ppr _ (Lit (LInt a)) = text (show a)
ppr _ (Lit (LBool b)) = text (show b)

ppr p e@(App _ _) =
let (f, xs) = viewApp e in
let args = sep $ map (ppr (p+1)) xs in
parensIf (p>0) $ ppr p f <+> args

ppr p e@(Lam _ _) =
let body = ppr (p+1) (viewBody e) in

329

let vars = map (ppr 0) (viewVars e) in
parensIf (p>0) $ char '\\' <> hsep vars <+> text "." <+> body

viewVars :: Expr -> [Name]
viewVars (Lam n a) = n : viewVars a
viewVars _ = []

viewBody :: Expr -> Expr
viewBody (Lam _ a) = viewBody a
viewBody x = x

viewApp :: Expr -> (Expr, [Expr])
viewApp (App e1 e2) = go e1 [e2]
where
go (App a b) xs = go a (b : xs)
go f xs = (f, xs)

ppexpr :: Expr -> String
ppexpr = render . ppr 0

s, k, example :: Expr
s = Lam "f" (Lam "g" (Lam "x" (App (Var "f") (App (Var "g") (Var "x")))))
k = Lam "x" (Lam "y" (Var "x"))
example = App s k

main :: IO ()
main = do
putStrLn $ ppexpr s
putStrLn $ ppShow example

The pretty printed form of the k combinator:
\f g x . (f (g x))

The Text.Show.Pretty library can be used to pretty print nested data struc-
tures in a more human readable form for any type that implements Show. For
example a dump of the structure for the AST of SK combinator with ppShow.
App
(Lam

"f" (Lam "g" (Lam "x" (App (Var "f") (App (Var "g") (Var "x"))))))
(Lam "x" (Lam "y" (Var "x")))

Adding the following to your ghci.conf can be useful for working with deeply
nested structures interactively.
import Text.Show.Pretty (ppShow)
let pprint x = putStrLn $ ppShow x

330

See:
• The Design of a Pretty-printing Library

wl-pprint-text

Combinators
renderPretty :: Float -> Int -> Doc -> SimpleDoc
renderCompact :: Doc -> SimpleDoc
renderOneLine :: Doc -> SimpleDoc

See:

Monadic API
• wl-pprint-text

Haskeline

Haskeline is cross-platform readline support which plays nice with GHCi as well.
runInputT :: Settings IO -> InputT IO a -> IO a
getInputLine :: String -> InputT IO (Maybe String)

import Control.Monad.Trans
import System.Console.Haskeline

type Repl a = InputT IO a

process :: String -> IO ()
process = putStrLn

repl :: Repl ()
repl = do
minput <- getInputLine "Repl> "
case minput of
Nothing -> outputStrLn "Goodbye."
Just input -> (liftIO $ process input) >> repl

main :: IO ()
main = runInputT defaultSettings repl

Repline

Certain sets of tasks in building command line REPL interfaces are so com-
mon that is becomes useful to abstract them out into a library. While haskeline

331

http://belle.sourceforge.net/doc/hughes95design.pdf
https://hackage.haskell.org/package/wl-pprint-text

provides a sensible lower-level API for interfacing with GNU readline, it is some-
what tedious to implement tab completion logic and common command logic
over and over. To that end Repline assists in building interactive shells that
that resemble GHCi’s default behavior.
module Main where

import Control.Monad.Trans
import System.Console.Repline

import Data.List (isPrefixOf)
import System.Process (callCommand)

type Repl a = HaskelineT IO a

-- Evaluation : handle each line user inputs
cmd :: String -> Repl ()
cmd input = liftIO $ print input

-- Tab Completion: return a completion for partial words entered
completer :: Monad m => WordCompleter m
completer n = do
let names = ["kirk", "spock", "mccoy"]
return $ filter (isPrefixOf n) names

-- Commands
help :: [String] -> Repl ()
help args = liftIO $ print $ "Help: " ++ show args

say :: [String] -> Repl ()
say args = do
_ <- liftIO $ callCommand $ "cowsay" ++ " " ++ (unwords args)
return ()

options :: [(String, [String] -> Repl ())]
options = [

("help", help) -- :help
, ("say", say) -- :say
]

ini :: Repl ()
ini = liftIO $ putStrLn "Welcome!"

repl :: IO ()
repl = evalRepl ">>> " cmd options (Word0 completer) ini

332

main :: IO ()
main = repl

Trying it out. (<TAB> indicates a user keypress)
$ runhaskell Simple.hs
Or if in a sandbox: cabal exec runhaskell Simple.hs
Welcome!
>>> <TAB>
kirk spock mccoy

>>> k<TAB>
kirk

>>> spam
"spam"

>>> :say Hello Haskell

< Hello Haskell >

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

See:
• repline

Template Haskell

This is an advanced section, knowledge of TemplateHaskell is not typically nec-
essary to write Haskell.

Perils of Metaprogramming

Template Haskell is a very powerful set of abstractions, some might say too
powerful. It effectively allows us to run arbitrary code at compile-time to gen-
erate other Haskell code. You can some absolutely crazy things, like going off
and reading from the filesystem or doing network calls that informs how your
code compiles leading to non-deterministic builds.
While in some extreme cases TH is useful, some discretion is required when
using this in production setting. TemplateHaskell can cause your build times

333

https://github.com/sdiehl/repline

to grow without bound, force you to manually sort all definitions your modules,
and generally produce unmaintainable code. If you find yourself falling back
on metaprogramming ask yourself, what in my abstractions has failed me such
that my only option is to write code that writes code.
Consideration should be used before enabling TemplateHaskell. Consider an
idiomatic solution first.

Quasiquotation

Quasiquotation allows us to express “quoted” blocks of syntax that need not
necessarily be be the syntax of the host language, but unlike just writing a
giant string it is instead parsed into some AST datatype in the host language.
Notably values from the host languages can be injected into the custom language
via user-definable logic allowing information to flow between the two languages.
In practice quasiquotation can be used to implement custom domain specific
languages or integrate with other general languages entirely via code-generation.
We’ve already seen how to write a Parsec parser, now let’s write a quasiquoter
for it.
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

module Quasiquote where

import Language.Haskell.TH
import Language.Haskell.TH.Syntax
import Language.Haskell.TH.Quote

import Text.Parsec
import Text.Parsec.String (Parser)
import Text.Parsec.Language (emptyDef)

import qualified Text.Parsec.Expr as Ex
import qualified Text.Parsec.Token as Tok

import Control.Monad.Identity

data Expr
= Tr
| Fl
| Zero
| Succ Expr
| Pred Expr
deriving (Eq, Show)

334

instance Lift Expr where
lift Tr = [| Tr |]
lift Fl = [| Tr |]
lift Zero = [| Zero |]
lift (Succ a) = [| Succ a |]
lift (Pred a) = [| Pred a |]

type Op = Ex.Operator String () Identity

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser emptyDef

parens :: Parser a -> Parser a
parens = Tok.parens lexer

reserved :: String -> Parser ()
reserved = Tok.reserved lexer

semiSep :: Parser a -> Parser [a]
semiSep = Tok.semiSep lexer

reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

prefixOp :: String -> (a -> a) -> Op a
prefixOp x f = Ex.Prefix (reservedOp x >> return f)

table :: [[Op Expr]]
table = [

[prefixOp "succ" Succ
, prefixOp "pred" Pred
]

]

expr :: Parser Expr
expr = Ex.buildExpressionParser table factor

true, false, zero :: Parser Expr
true = reserved "true" >> return Tr
false = reserved "false" >> return Fl
zero = reservedOp "0" >> return Zero

factor :: Parser Expr
factor =

true

335

<|> false
<|> zero
<|> parens expr

contents :: Parser a -> Parser a
contents p = do
Tok.whiteSpace lexer
r <- p
eof
return r

toplevel :: Parser [Expr]
toplevel = semiSep expr

parseExpr :: String -> Either ParseError Expr
parseExpr s = parse (contents expr) "<stdin>" s

parseToplevel :: String -> Either ParseError [Expr]
parseToplevel s = parse (contents toplevel) "<stdin>" s

calcExpr :: String -> Q Exp
calcExpr str = do
filename <- loc_filename `fmap` location
case parse (contents expr) filename str of
Left err -> error (show err)
Right tag -> [| tag |]

calc :: QuasiQuoter
calc = QuasiQuoter calcExpr err err err
where err = error "Only defined for values"

Testing it out:
{-# LANGUAGE QuasiQuotes #-}

import Quasiquote

a :: Expr
a = [calc|true|]
-- Tr

b :: Expr
b = [calc|succ (succ 0)|]
-- Succ (Succ Zero)

c :: Expr
c = [calc|pred (succ 0)|]

336

-- Pred (Succ Zero)

One extremely important feature is the ability to preserve position information
so that errors in the embedded language can be traced back to the line of the
host syntax.

language-c-quote

Of course since we can provide an arbitrary parser for the quoted expression, one
might consider embedding the AST of another language entirely. For example
C or CUDA C.
hello :: String -> C.Func
hello msg = [cfun|

int main(int argc, const char *argv[])
{

printf($msg);
return 0;

}

|]

Evaluating this we get back an AST representation of the quoted C program
which we can manipulate or print back out to textual C code using ppr function.
Func
(DeclSpec [] [] (Tint Nothing))
(Id "main")
DeclRoot
(Params

[Param (Just (Id "argc")) (DeclSpec [] [] (Tint Nothing)) DeclRoot
, Param

(Just (Id "argv"))
(DeclSpec [] [Tconst] (Tchar Nothing))
(Array [] NoArraySize (Ptr [] DeclRoot))

]
False)

[BlockStm
(Exp

(Just
(FnCall

(Var (Id "printf"))
[Const (StringConst ["\"Hello Haskell!\""] "Hello Haskell!")
])))

, BlockStm (Return (Just (Const (IntConst "0" Signed 0))))
]

337

In this example we just spliced in the anti-quoted Haskell string in the printf
statement, but we can pass many other values to and from the quoted expres-
sions including identifiers, numbers, and other quoted expressions which imple-
ment the Lift type class.
For example now if we wanted programmatically generate the source for a CUDA
kernel to run on a GPU we can switch over the CUDA C dialect to emit the C
code.
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

import Text.PrettyPrint.Mainland
import qualified Language.C.Syntax as C
import qualified Language.C.Quote.CUDA as Cuda

cuda_fun :: String -> Int -> Float -> C.Func
cuda_fun fn n a = [Cuda.cfun|

__global__ void $id:fn (float *x, float *y) {
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i<$n) { y[i] = $a*x[i] + y[i]; }

}

|]

cuda_driver :: String -> Int -> C.Func
cuda_driver fn n = [Cuda.cfun|

void driver (float *x, float *y) {
float *d_x, *d_y;

cudaMalloc(&d_x, $n*sizeof(float));
cudaMalloc(&d_y, $n*sizeof(float));

cudaMemcpy(d_x, x, $n, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, $n, cudaMemcpyHostToDevice);

$id:fn<<<($n+255)/256, 256>>>(d_x, d_y);

cudaFree(d_x);
cudaFree(d_y);
return 0;

}

|]

338

makeKernel :: String -> Float -> Int -> [C.Func]
makeKernel fn a n = [

cuda_fun fn n a
, cuda_driver fn n
]

main :: IO ()
main = do
let ker = makeKernel "saxpy" 2 65536
mapM_ (print . ppr) ker

Running this we generate:
__global__ void saxpy(float* x, float* y)
{

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < 65536) {
y[i] = 2.0 * x[i] + y[i];

}
}
int driver(float* x, float* y)
{

float* d_x, * d_y;

cudaMalloc(&d_x, 65536 * sizeof(float));
cudaMalloc(&d_y, 65536 * sizeof(float));
cudaMemcpy(d_x, x, 65536, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, 65536, cudaMemcpyHostToDevice);
saxpy<<<(65536 + 255) / 256, 256>>>(d_x, d_y);
return 0;

}

Run the resulting output through nvcc -ptx -c to get the PTX associated
with the outputted code.

Template Haskell

Of course the most useful case of quasiquotation is the ability to procedurally
generate Haskell code itself from inside of Haskell. The template-haskell
framework provides four entry points for the quotation to generate various types
of Haskell declarations and expressions.

Type Quasiquoted Class
Q Exp [e| ... |] expression
Q Pat [p| ... |] pattern

339

Type Quasiquoted Class
Q Type [t| ... |] type
Q [Dec] [d| ... |] declaration

data QuasiQuoter = QuasiQuoter
{ quoteExp :: String -> Q Exp
, quotePat :: String -> Q Pat
, quoteType :: String -> Q Type
, quoteDec :: String -> Q [Dec]
}

The logic evaluating, splicing, and introspecting compile-time values is embed-
ded within the Q monad, which has a runQ which can be used to evaluate its
context. These functions of this monad is deeply embedded in the implementa-
tion of GHC.
runQ :: Quasi m => Q a -> m a
runIO :: IO a -> Q a

Just as before, TemplateHaskell provides the ability to lift Haskell values into
the their AST quantities within the quoted expression using the Lift type class.
class Lift t where
lift :: t -> Q Exp

instance Lift Integer where
lift x = return (LitE (IntegerL x))

instance Lift Int where
lift x= return (LitE (IntegerL (fromIntegral x)))

instance Lift Char where
lift x = return (LitE (CharL x))

instance Lift Bool where
lift True = return (ConE trueName)
lift False = return (ConE falseName)

instance Lift a => Lift (Maybe a) where
lift Nothing = return (ConE nothingName)
lift (Just x) = liftM (ConE justName `AppE`) (lift x)

instance Lift a => Lift [a] where
lift xs = do { xs' <- mapM lift xs; return (ListE xs') }

In many cases Template Haskell can be used interactively to explore the AST
form of various Haskell syntax.

340

�: runQ [e| \x -> x |]
LamE [VarP x_2] (VarE x_2)

�: runQ [d| data Nat = Z | S Nat |]
[DataD [] Nat_0 [] [NormalC Z_2 [],NormalC S_1 [(NotStrict,ConT Nat_0)]] []]

�: runQ [p| S (S Z)|]
ConP Singleton.S [ConP Singleton.S [ConP Singleton.Z []]]

�: runQ [t| Int -> [Int] |]
AppT (AppT ArrowT (ConT GHC.Types.Int)) (AppT ListT (ConT GHC.Types.Int))

�: let g = $(runQ [| \x -> x |])

�: g 3
3

Using Language.Haskell.TH we can piece together Haskell AST element by el-
ement but subject to our own custom logic to generate the code. This can be
somewhat painful though as the source-language (called HsSyn) to Haskell is
enormous, consisting of around 100 nodes in its AST many of which are depen-
dent on the state of language pragmas.
-- builds the function (f = \(a,b) -> a)
f :: Q [Dec]
f = do
let f = mkName "f"
a <- newName "a"
b <- newName "b"
return [FunD f [Clause [TupP [VarP a, VarP b]] (NormalB (VarE a)) []]]

my_id :: a -> a
my_id x = $([| x |])

main = print (my_id "Hello Haskell!")

As a debugging tool it is useful to be able to dump the reified information out
for a given symbol interactively, to do so there is a simple little hack.
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

import Text.Show.Pretty (ppShow)
import Language.Haskell.TH

introspect :: Name -> Q Exp
introspect n = do
t <- reify n

341

http://hackage.haskell.org/package/template-haskell-2.4.0.0/docs/Language-Haskell-TH-Syntax.html#t:Dec

runIO $ putStrLn $ ppShow t
[| return () |]

�: $(introspect 'id)
VarI
GHC.Base.id
(ForallT

[PlainTV a_1627405383]
[]
(AppT (AppT ArrowT (VarT a_1627405383)) (VarT a_1627405383)))

Nothing
(Fixity 9 InfixL)

�: $(introspect ''Maybe)
TyConI
(DataD

[]
Data.Maybe.Maybe
[PlainTV a_1627399528]
[NormalC Data.Maybe.Nothing []
, NormalC Data.Maybe.Just [(NotStrict , VarT a_1627399528)]
]
[])

import Language.Haskell.TH

foo :: Int -> Int
foo x = x + 1

data Bar

fooInfo :: InfoQ
fooInfo = reify 'foo

barInfo :: InfoQ
barInfo = reify ''Bar

$([d| data T = T1 | T2 |])

main = print [T1, T2]

Splices are indicated by $(f) syntax for the expression level and at the toplevel
simply by invocation of the template Haskell function. Running GHC with
-ddump-splices shows our code being spliced in at the specific location in the
AST at compile-time.

342

$(f)

template_haskell_show.hs:1:1: Splicing declarations
f

======>
template_haskell_show.hs:8:3-10
f (a_a5bd, b_a5be) = a_a5bd

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

module Splice where

import Language.Haskell.TH
import Language.Haskell.TH.Syntax

spliceF :: Q [Dec]
spliceF = do
let f = mkName "f"
a <- newName "a"
b <- newName "b"
return [FunD f [Clause [VarP a, VarP b] (NormalB (VarE a)) []]]

spliceG :: Lift a => a -> Q [Dec]
spliceG n = runQ [d| g a = n |]

{-# LANGUAGE TemplateHaskell #-}

import Splice

spliceF
spliceG "argument"

main = do
print $ f 1 2
print $ g ()

At the point of the splice all variables and types used must be in scope, so it
must appear after their declarations in the module. As a result we often have
to mentally topologically sort our code when using TemplateHaskell such that
declarations are defined in order.
See: Template Haskell AST

343

http://hackage.haskell.org/package/template-haskell-2.9.0.0/docs/Language-Haskell-TH.html#t:Exp

Antiquotation

Extending our quasiquotation from above now that we have TemplateHaskell
machinery we can implement the same class of logic that it uses to pass Haskell
values in and pull Haskell values out via pattern matching on templated expres-
sions.
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE DeriveDataTypeable #-}

module Antiquote where

import Data.Generics
import Language.Haskell.TH
import Language.Haskell.TH.Quote

import Text.Parsec
import Text.Parsec.String (Parser)
import Text.Parsec.Language (emptyDef)

import qualified Text.Parsec.Expr as Ex
import qualified Text.Parsec.Token as Tok

data Expr
= Tr
| Fl
| Zero
| Succ Expr
| Pred Expr
| Antiquote String
deriving (Eq, Show, Data, Typeable)

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser emptyDef

parens :: Parser a -> Parser a
parens = Tok.parens lexer

reserved :: String -> Parser ()
reserved = Tok.reserved lexer

identifier :: Parser String
identifier = Tok.identifier lexer

semiSep :: Parser a -> Parser [a]

344

semiSep = Tok.semiSep lexer

reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

oper s f assoc = Ex.Prefix (reservedOp s >> return f)

table = [oper "succ" Succ Ex.AssocLeft
, oper "pred" Pred Ex.AssocLeft
]

expr :: Parser Expr
expr = Ex.buildExpressionParser [table] factor

true, false, zero :: Parser Expr
true = reserved "true" >> return Tr
false = reserved "false" >> return Fl
zero = reservedOp "0" >> return Zero

antiquote :: Parser Expr
antiquote = do
char '$'
var <- identifier
return $ Antiquote var

factor :: Parser Expr
factor = true

<|> false
<|> zero
<|> antiquote
<|> parens expr

contents :: Parser a -> Parser a
contents p = do
Tok.whiteSpace lexer
r <- p
eof
return r

parseExpr :: String -> Either ParseError Expr
parseExpr s = parse (contents expr) "<stdin>" s

class Expressible a where
express :: a -> Expr

345

instance Expressible Expr where
express = id

instance Expressible Bool where
express True = Tr
express False = Fl

instance Expressible Integer where
express 0 = Zero
express n = Succ (express (n - 1))

exprE :: String -> Q Exp
exprE s = do
filename <- loc_filename `fmap` location
case parse (contents expr) filename s of
Left err -> error (show err)
Right exp -> dataToExpQ (const Nothing `extQ` antiExpr) exp

exprP :: String -> Q Pat
exprP s = do
filename <- loc_filename `fmap` location
case parse (contents expr) filename s of
Left err -> error (show err)
Right exp -> dataToPatQ (const Nothing `extQ` antiExprPat) exp

-- antiquote RHS
antiExpr :: Expr -> Maybe (Q Exp)
antiExpr (Antiquote v) = Just embed
where embed = [| express $(varE (mkName v)) |]

antiExpr _ = Nothing

-- antiquote LHS
antiExprPat :: Expr -> Maybe (Q Pat)
antiExprPat (Antiquote v) = Just $ varP (mkName v)
antiExprPat _ = Nothing

mini :: QuasiQuoter
mini = QuasiQuoter exprE exprP undefined undefined

{-# LANGUAGE QuasiQuotes #-}

import Antiquote

-- extract
a :: Expr -> Expr

346

a [mini|succ $x|] = x

b :: Expr -> Expr
b [mini|succ $x|] = [mini|pred $x|]

c :: Expressible a => a -> Expr
c x = [mini|succ $x|]

d :: Expr
d = c (8 :: Integer)
-- Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))

e :: Expr
e = c True
-- Succ Tr

Templated Type Families

This is an advanced section, knowledge of TemplateHaskell is not typically nec-
essary to write Haskell.
Just like at the value-level we can construct type-level constructions by piecing
together their AST.
Type AST
---------- ----------
t1 -> t2 ArrowT `AppT` t2 `AppT` t2
[t] ListT `AppT` t
(t1,t2) TupleT 2 `AppT` t1 `AppT` t2

For example consider that type-level arithmetic is still somewhat incomplete in
GHC 7.6, but there often cases where the span of typelevel numbers is not full
set of integers but is instead some bounded set of numbers. We can instead
define operations with a type-family instead of using an inductive definition (
which often requires manual proofs) and simply enumerates the entire domain
of arguments to the type-family and maps them to some result computed at
compile-time.
For example the modulus operator would be non-trivial to implement at type-
level but instead we can use the enumFamily function to splice in type-family
which simply enumerates all possible pairs of numbers up to a desired depth.
module EnumFamily where
import Language.Haskell.TH

enumFamily :: (Integer -> Integer -> Integer)
-> Name
-> Integer

347

-> Q [Dec]
enumFamily f bop upper = return decls
where
decls = do
i <- [1..upper]
j <- [2..upper]
return $ TySynInstD bop (rhs i j)

rhs i j = TySynEqn
[LitT (NumTyLit i), LitT (NumTyLit j)]
(LitT (NumTyLit (i `f` j)))

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TemplateHaskell #-}

import EnumFamily

import Data.Proxy
import GHC.TypeLits

type family Mod (m :: Nat) (n :: Nat) :: Nat
type family Add (m :: Nat) (n :: Nat) :: Nat
type family Pow (m :: Nat) (n :: Nat) :: Nat

enumFamily mod ''Mod 10
enumFamily (+) ''Add 10
enumFamily (^) ''Pow 10

a :: Integer
a = natVal (Proxy :: Proxy (Mod 6 4))
-- 2

b :: Integer
b = natVal (Proxy :: Proxy (Pow 3 (Mod 6 4)))
-- 9

-- enumFamily mod ''Mod 3
-- ======>
-- template_typelevel_splice.hs:7:1-14
-- type instance Mod 2 1 = 0
-- type instance Mod 2 2 = 0
-- type instance Mod 2 3 = 2
-- type instance Mod 3 1 = 0
-- type instance Mod 3 2 = 1
-- type instance Mod 3 3 = 0

348

-- ...

In practice GHC seems fine with enormous type-family declarations although
compile-time may increase a bit as a result.
The singletons library also provides a way to automate this process by letting
us write seemingly value-level declarations inside of a quasiquoter and then
promoting the logic to the type-level. For example if we wanted to write a value-
level and type-level map function for our HList this would normally involve quite
a bit of boilerplate, now it can stated very concisely.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeSynonymInstances #-}

import Data.Singletons
import Data.Singletons.TH

$(promote [d|
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs
|])

infixr 5 :::

data HList (ts :: [*]) where
Nil :: HList '[]
(:::) :: t -> HList ts -> HList (t ': ts)

-- TypeLevel
-- MapJust :: [*] -> [Maybe *]
type MapJust xs = Map Maybe xs

-- Value Level
-- mapJust :: [a] -> [Maybe a]
mapJust :: HList xs -> HList (MapJust xs)
mapJust Nil = Nil

349

mapJust (x ::: xs) = (Just x) ::: mapJust xs

type A = [Bool, String , Double , ()]

a :: HList A
a = True ::: "foo" ::: 3.14 ::: () ::: Nil

example1 :: HList (MapJust A)
example1 = mapJust a

-- example1 reduces to example2 when expanded
example2 :: HList ([Maybe Bool, Maybe String , Maybe Double , Maybe ()])
example2 = Just True ::: Just "foo" ::: Just 3.14 ::: Just () ::: Nil

Templated Type Classes

This is an advanced section, knowledge of TemplateHaskell is not typically nec-
essary to write Haskell.
Probably the most common use of Template Haskell is the automatic generation
of type-class instances. Consider if we wanted to write a simple Pretty printing
class for a flat data structure that derived the ppr method in terms of the names
of the constructors in the AST we could write a simple instance.
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}

module Class where

import Language.Haskell.TH

class Pretty a where
ppr :: a -> String

normalCons :: Con -> Name
normalCons (NormalC n _) = n

getCons :: Info -> [Name]
getCons cons = case cons of

TyConI (DataD _ _ _ tcons _) -> map normalCons tcons
con -> error $ "Can't derive for:" ++ (show con)

pretty :: Name -> Q [Dec]

350

pretty dt = do
info <- reify dt
Just cls <- lookupTypeName "Pretty"
let datatypeStr = nameBase dt
let cons = getCons info
let dtype = mkName (datatypeStr)
let mkInstance xs =

InstanceD
[] -- Context
(AppT
(ConT cls) -- Instance
(ConT dtype)) -- Head

[(FunD (mkName "ppr") xs)] -- Methods
let methods = map cases cons
return $ [mkInstance methods]

-- Pattern matches on the ``ppr`` method
cases :: Name -> Clause
cases a = Clause [ConP a []] (NormalB (LitE (StringL (nameBase a)))) []

In a separate file invoke the pretty instance at the toplevel, and with
--ddump-splice if we want to view the spliced class instance.
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

import Class

data PlatonicSolid
= Tetrahedron
| Cube
| Octahedron
| Dodecahedron
| Icosahedron

pretty ''PlatonicSolid

main :: IO ()
main = do
putStrLn (ppr Octahedron)
putStrLn (ppr Dodecahedron)

Multiline Strings

Haskell no language support for multiline strings literals, although we can em-
ulate this by using a quasiquoter. The resulting String literal is then converted

351

using toString into whatever result type is desired.
{-# LANGUAGE TemplateHaskell #-}

module Multiline (s) where

import Data.String
import Language.Haskell.TH.Quote

s :: QuasiQuoter
s = QuasiQuoter
{ quoteExp = (\a -> [|fromString a|]) . trim
, quotePat = _ -> fail "illegal raw string QuasiQuote"
, quoteType = _ -> fail "illegal raw string QuasiQuote"
, quoteDec = _ -> fail "illegal raw string QuasiQuote"
}

trim :: String -> String
trim ('\n':xs) = xs
trim xs = xs

In a separate module we can then enable Quasiquotes and embed the string.
{-# LANGUAGE QuasiQuotes #-}

import Multiline (s)
import qualified Data.Text as T

foo :: T.Text
foo = [s|
This
is
my
multiline
string
|]

git-embed

Often times it is neccessary to embed the specific Git version hash of a build
inside the exectuable. Using git-embed the compiler will effectivelly shell out to
the command line to retrieve the version information of the CWD Git repostory
and use Template Haskell to define embed this information at compile-time.
This is often useful for embedding in --version information in the command
line interface to your program or service.

352

{-# LANGUAGE TemplateHaskell #-}

import Git.Embed
import Data.Version
import Paths_myprog

gitRev :: String
gitRev = $(embedGitShortRevision)

gitBranch :: String
gitBranch = $(embedGitBranch)

ver :: String
ver = showVersion Paths_myprog.version

See: git-embed

Categories

This is an advanced section, knowledge of category theory is not typically nec-
essary to write Haskell.
Alas we come to the topic of category theory. Some might say all discussion of
Haskell eventually leads here at one point or another.
Nevertheless the overall importance of category theory in the context of Haskell
has been somewhat overstated and unfortunately mystified to some extent. The
reality is that amount of category theory which is directly applicable to Haskell
roughly amounts to a subset of the first chapter of any undergraduate text. And
even then, no actual knowledge of category theory is required to use Haskell at
all.

Algebraic Relations

Grossly speaking category theory is not terribly important to Haskell program-
ming, and although some libraries derive some inspiration from the subject;
most do not. What is more important is a general understanding of equational
reasoning and a familiarity with various algebraic relations.
Certain relations show up so frequently we typically refer to their properties by
name (often drawn from an equivalent abstract algebra concept). Consider a
binary operation a `op` b and a unary operation f.
Associativity
a `op` (b `op` c) = (a `op` b) `op` c

Commutativity

353

https://hackage.haskell.org/package/git-embed

a `op` b = b `op` a

Units
a `op` e = a
e `op` a = a

Inversion
(inv a) `op` a = e
a `op` (inv a) = e

Zeros
a `op` e = e
e `op` a = e

Linearity
f (x `op` y) = f x `op` f y

Idempotency
f (f x) = f x

Distributivity
a `f` (b `g` c) = (a `f` b) `g` (a `f` c)
(b `g` c) `f` a = (b `f` a) `g` (c `f` a)

Anticommutativity
a `op` b = inv (b `op` a)

And of course combinations of these properties over multiple functions gives
rise to higher order systems of relations that occur over and over again through-
out functional programming, and once we recognize them we can abstract over
them. For instance a monoid is a combination of a unit and a single associative
operation over a set of values.

Categories

The most basic structure is a category which is an algebraic structure of ob-
jects (Obj) and morphisms (Hom) with the structure that morphisms compose
associatively and the existence of an identity morphism for each object.
With kind polymorphism enabled we can write down the general category pa-
rameterized by a type variable “c” for category, and the instance Hask the
category of Haskell types with functions between types as morphisms.
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeSynonymInstances #-}

import Prelude hiding ((.), id)

354

-- Morphisms
type (a ~> b) c = c a b

class Category (c :: k -> k -> *) where
id :: (a ~> a) c
(.) :: (y ~> z) c -> (x ~> y) c -> (x ~> z) c

type Hask = (->)

instance Category Hask where
id x = x
(f . g) x = f (g x)

Categories are interesting since they exhibit various composition properties and
ways in which various elements in the category can be composed and rewritten
while preserving several invariants about the program.

Isomorphisms

Two objects of a category are said to be isomorphic if we can construct a mor-
phism with 2-sided inverse that takes the structure of an object to another form
and back to itself when inverted.
f :: a -> b
f' :: b -> a

Such that:
f . f' = id
f'. f = id

For example the types Either () a and Maybe a are isomorphic.
{-# LANGUAGE ExplicitForAll #-}

data Iso a b = Iso { to :: a -> b, from :: b -> a }

f :: forall a. Maybe a -> Either () a
f (Just a) = Right a
f Nothing = Left ()

f' :: forall a. Either () a -> Maybe a
f' (Left _) = Nothing
f' (Right a) = Just a

iso :: Iso (Maybe a) (Either () a)
iso = Iso f f'

355

data V = V deriving Eq

ex1 = f (f' (Right V)) == Right V
ex2 = f' (f (Just V)) == Just V

data Iso a b = Iso { to :: a -> b, from :: b -> a }

instance Category Iso where
id = Iso id id
(Iso f f') . (Iso g g') = Iso (f . g) (g' . f')

Duality

One of the central ideas is the notion of duality, that reversing some internal
structure yields a new structure with a “mirror” set of theorems. The dual of a
category reverse the direction of the morphisms forming the category COp.
import Control.Category
import Prelude hiding ((.), id)

newtype Op a b = Op (b -> a)

instance Category Op where
id = Op id
(Op f) . (Op g) = Op (g . f)

See:
• Duality for Haskellers

Functors

Functors are mappings between the objects and morphisms of categories that
preserve identities and composition.
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeSynonymInstances #-}

import Prelude hiding (Functor, fmap, id)

class (Category c, Category d) => Functor c d t where
fmap :: c a b -> d (t a) (t b)

type Hask = (->)

instance Category Hask where

356

http://blog.ezyang.com/2012/10/duality-for-haskellers/

id x = x
(f . g) x = f (g x)

instance Functor Hask Hask [] where
fmap f [] = []
fmap f (x:xs) = f x : (fmap f xs)

fmap id � id
fmap (a . b) � (fmap a) . (fmap b)

Natural Transformations

Natural transformations are mappings between functors that are invariant under
interchange of morphism composition order.
type Nat f g = forall a. f a -> g a

Such that for a natural transformation h we have:
fmap f . h � h . fmap f

The simplest example is between (f = List) and (g = Maybe) types.
headMay :: forall a. [a] -> Maybe a
headMay [] = Nothing
headMay (x:xs) = Just x

Regardless of how we chase safeHead, we end up with the same result.
fmap f (headMay xs) � headMay (fmap f xs)

fmap f (headMay [])
= fmap f Nothing
= Nothing

headMay (fmap f [])
= headMay []
= Nothing

fmap f (headMay (x:xs))
= fmap f (Just x)
= Just (f x)

headMay (fmap f (x:xs))
= headMay [f x]
= Just (f x)

Or consider the Functor (->).
f :: (Functor t)
=> (->) a b
-> (->) (t a) (t b)

357

f = fmap

g :: (b -> c)
-> (->) a b
-> (->) a c

g = (.)

c :: (Functor t)
=> (b -> c)
-> (->) (t a) (t b)
-> (->) (t a) (t c)

c = f . g

f . g x = c x . g

A lot of the expressive power of Haskell types comes from the interesting fact
that, with a few caveats, polymorphic Haskell functions are natural transforma-
tions.
See: You Could Have Defined Natural Transformations

Yoneda Lemma

The Yoneda lemma is an elementary, but deep result in Category theory. The
Yoneda lemma states that for any functor F, the types F a and � b. (a -> b)
-> F b are isomorphic.
{-# LANGUAGE RankNTypes #-}

embed :: Functor f => f a -> (forall b . (a -> b) -> f b)
embed x f = fmap f x

unembed :: Functor f => (forall b . (a -> b) -> f b) -> f a
unembed f = f id

So that we have:
embed . unembed � id
unembed . embed � id

The most broad hand-wavy statement of the theorem is that an object in a
category can be represented by the set of morphisms into it, and that the in-
formation about these morphisms alone sufficiently determines all properties of
the object itself.
In terms of Haskell types, given a fixed type a and a functor f, if we have some
a higher order polymorphic function g that when given a function of type a
-> b yields f b then the behavior g is entirely determined by a -> b and the
behavior of g can written purely in terms of f a.

358

http://blog.sigfpe.com/2008/05/you-could-have-defined-natural.html

See:
• Reverse Engineering Machines with the Yoneda Lemma

Kleisli Category

Kleisli composition (i.e. Kleisli Fish) is defined to be:
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
f >=> g � \x -> f x >>= g

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
(<=<) = flip (>=>)

The monad laws stated in terms of the Kleisli category of a monad m are stated
much more symmetrically as one associativity law and two identity laws.
(f >=> g) >=> h � f >=> (g >=> h)
return >=> f � f
f >=> return � f

Stated simply that the monad laws above are just the category laws in the Kleisli
category.
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ExplicitForAll #-}

import Control.Monad
import Control.Category
import Prelude hiding ((.))

-- Kleisli category
newtype Kleisli m a b = K (a -> m b)

-- Kleisli morphisms (a -> m b)
type (a :~> b) m = Kleisli m a b

instance Monad m => Category (Kleisli m) where
id = K return
(K f) . (K g) = K (f <=< g)

just :: (a :~> a) Maybe
just = K Just

left :: forall a b. (a :~> b) Maybe -> (a :~> b) Maybe
left f = just . f

359

http://blog.sigfpe.com/2006/11/yoneda-lemma.html

right :: forall a b. (a :~> b) Maybe -> (a :~> b) Maybe
right f = f . just

For example, Just is just an identity morphism in the Kleisli category of the
Maybe monad.
Just >=> f � f
f >=> Just � f

Resources

• Category Theory, Awodey
• Category Theory Foundations
• The Catsters

Other Languages

Let us attempt to give an objective comparison of Haskell to other languages
with regards to which language principles they share and how they differ. This
is not advisement to use or not use any of these languages simply a statement
of the similarities and differences between them at the language level.
No notion of “weak” or “strong” typing will be discussed because the terms have
no universal meaning.
No notion of “object-oriented” or “functional” paradigms will be discussed be-
cause the terms have no universal meaning.

Haskell

Haskell’s main implementation is ghc.
Haskell is a general purpose language.
Haskell is garbage collected.
Haskell is compiled through a custom native code generator.
Haskell is statically typed.
Haskell allows polymorphism by means of parametric polymorphism and ad-hoc
polymorphism through typeclasses.
Haskell is pure and statically tracks effects.

360

http://www.amazon.com/Category-Theory-Oxford-Logic-Guides/dp/0199237182
https://www.youtube.com/watch?v=ZKmodCApZwk
http://www.youtube.com/user/TheCatsters

OCaml

OCaml originally known as Objective Caml, is the main implementation of the
Caml programming language. The type system of OCaml is significantly less ad-
vanced than modern GHC Haskell and does not supported higher-kinded typed
or type-level programming to the extent that has become prevalent in portions
of recent Haskell. The OCaml compiler is also significantly less advanced than
modern GHC runtime and largely does not perform any compiler optimizations
or program transformations. The language itself does has several advantages
over Haskell in that is has a module system Although it is possible to write
pure OCaml there is no language-integrated support and the current engineer-
ing practice around the language encourages ubiquitous impurity in third party
libraries.
Main difference: Both have fairly modern type type systems, but OCaml does
not enforce purity and uses call-by-value.
Ocaml’s main implementation is ocamlc.
OCaml is a general purpose language.
OCaml is a statically typed language.
OCaml is garbage collected.
OCaml allows polymorphism by means of parametric polymorphism and ad-hoc
polymorphism through modular implicits.
OCaml has a module system and functors.
OCaml is not an optimizing compiler.
Ocaml is impure by default and does not statically track effects.

Standard ML

Standard ML was a general-purpose, modular, functional programming lan-
guage with compile-time type checking and type inference.
Standard ML was traditionally a general purpose language, although it’s lack
of a modern compiler largely only makes it useful for work on pure type theory
and proof assistants and not in industrial settings. Standard ML has been
largely abandoned in recent years and is a good example of a promising language
that withered on the vine from a lack of engineering effort devoted toward the
backend compiler.
Main difference: Standard ML is no longer actively developed, Haskell is.
Standard ML’s main implementation is smlnj. Other implementations existed
in mlton and polyml.
Standard ML has no package manager.

361

Standard ML allows polymorphism by means of parametric polymorphism.
Standard ML has a module system and functors.
Standard ML is a statically typed language.
Standard ML is impure by default and does not statically track effects.
Standard ML implementations are typically garbage collected.

Agda

Main difference: Agda is not a general purpose language, Haskell is.
Agda’s main implementation is agda.
Agda is not a general purpose language, it is largely used as a proof environment.
Agda has no package manager.
Agda is a statically typed language.

Coq

Coq is an interactive theorem prover based on the calculus of inductive construc-
tions. It compiles into a Core language called Gallina whose defining feature
is that it is weakly normalizing (i.e. all programs terminate). Although Coq
allows limited extraction of some programs to other languages, it is not by itself
a programming language in the traditional sense, most Coq programs are not
run or compiled.
Main difference: Coq is not a general purpose language, Haskell is.
Coq’s main implementation is coq.
Coq is not a general purpose language, it is largely used as a proof environment.
Coq is a statically typed language.

Idris

Idris is a general-purpose purely functional programming language with depen-
dent types.
Main difference: Idris has dependent types and call-by-value semantics,
Haskell does not have dependent types and uses call-by-need.
Idris’s main implementation is idris.
Idris is a general purpose language.
Idris allows polymorphism by means of parametric polymorphism and ad-hoc
polymorphism.

362

Idris is a statically typed language.
Idris is garbage collected by default, although there is some novel work on unique-
ness types which can statically guarantee aliasing properties of references.
Idris is pure and statically tracks effects.

Rust

Rust is a general-purpose, multi-paradigm, compiled programming language de-
veloped by Mozilla Research. It incorporates many of the foundational ideas of
Haskell’s type system but uses a more traditional imperative evaluation model.
Rust includes type inference, ad-hoc polymorphism, sum types, and option
chaining as safe exception handling. Notably Rust lacks higher-kinded types
which does not allow many modern functional abstractions to be encoded in the
language. Rust does not enforce purity or track effects, but has a system for
statically analyzing lifetimes of references informing the efficient compilation of
many language constructs to occur without heap allocation.
Main difference: Rust is a modern imperative typed language, Haskell is a
modern functional typed language with recent type system. Rust does not have
the capacity to distinguish between pure and impure functions at the language
level.
Rust’s main implementation is rustc.
Rust is a statically typed language.
Rust is a general purpose language.
Rust allows polymorphism by means of parametric polymorphism and ad-hoc
polymorphism.
Rust is not garbage collected by default, instead uses static semantics to the
analyze lifetimes. Optionally supports garbage collection.
Rust is impure by default and does not statically track effects. It does however
have static tracking of memory allocations and lifetimes.

Purescript

Purescript is a Haskell-like language that compiles into Javascript for evaluation
within a web browser. Semantically it is very close to Haskell except that is
uses a call-by-value model instead of Haksell’s call-by-need. The type system
is a superset of Haskell 2010 and includes ad-hoc polymorphism, parametric
polymorphism, rank-n polymorphism, row-polymorphism, higher-kinded types
and full algebraic data types.
Main difference: Purescript targets Javascript in the browser, while GHC
Haskell is designed to work on top of the GHC managed runtime.

363

http://docs.idris-lang.org/en/latest/reference/uniqueness-types.html
http://docs.idris-lang.org/en/latest/reference/uniqueness-types.html

Purescript’s main implementation is purescript.
Purescript is a statically typed language.
Purescript is pure and statically tracks effects using an extensible record system
embedded in the Eff monad.

Elm

Elm is a ML-like language that compiles into Javascript for evaluation within a
web browser.
Main difference: Elm targets Javascript in the browser, while GHC Haskell is
designed to work on top of the GHC managed runtime. Elm lacks any semblance
of a modern ML type system features, and has no coherent story for overloading,
modules or higher polymorphism.
Elm’s main implementation is elm.
Elm is a statically typed language.
Elm allows polymorphism by means of parametric polymorphism.
Elm is pure and statically tracks effects.

Python

Python is a widely used general-purpose, high-level programming language. It
is based on object-style of programming constructions and allows first class
functions and higher order functions. Python is unityped and is notable for it’s
simplistic runtime and global mutex preventing concurrency.
Main difference: Python is unityped and imperative, Haskell is statically
typed.
Python’s main implementation is cpython.
Python is a unityped language.
Python is impure by default and does not statically track effects.
Python internally refers to runtime value tags as types, which differs from the
Haskell notion of types.
Python allows polymorphism by means of unityping, all functions can take any
type.

R

R’s main implementation is r.
R is a unityped language.

364

R allows polymorphism by means of unityping.
R internally refers to runtime value tags as types, which differs from the Haskell
notion of types.
R is interpreted.

Julia

Julia is a high-level dynamic programming language designed to address the
requirements of high-performance numerical and scientific computing.
Main difference: Julia is unityped and imperative, Haskell is statically typed.
Julia’s main implementation is juliia.
Julia is a unityped language.
Julia allows polymorphism by means of unityping.
Julia internally refers to runtime value tags as types, which differs from the
Haskell notion of types.
Julia is compiled through the LLVM framework.

Erlang

Erlang’s main implementation is erl.
Erlang is a unityped language.
Erlang is interpreted.
Erlang allows polymorphism by means of unityping.
Erlang internally refers to runtime value tags as types, which differs from the
Haskell notion of types.
Erlang is impure by default and does not statically track effects.

Clojure

Clojure is a modern LISP dialect that emphasizes immutability. It does not
enforce safety and idiomatic clojure often includes mutable references and de-
structive updates. There are some efforts toward an optional typing system
provided by the core.typed.
Main difference: Clojure is a unityped typed Lisp dialect, while Haskell is in
the ML family.
Clojure’s main implementation is clojure.
Clojure is a unityped language.

365

https://github.com/clojure/core.typed

Clojure allows polymorphism by means of unityping.
Clojure internally refers to runtime value tags as types, which differs from the
Haskell notion of types.
Clojure is compiled to Java Virtual Machine bytecode.

Swift

Swift is a multi-paradigm language created for iOS and OS X development
by Apple. Swift incorporates recent developments in language design and un-
commonly includes return type polymorphism, type inference, ad-hoc polymor-
phism, sum types, and option chaining as safe exception handling. Swift does
not enforce purity or track effects, and allows mutable and destructive updates.
Main difference: Swift is reasonably modern imperative typed language,
Haskell is a modern functional typed language.
Swift’s main implementation is swiftc.
Swift allows polymorphism by means of parametric polymorphism and ad-hoc
polymorphism.
Swift is a statically typed language.
Swift is compiled through the LLVM framework.
Swift does not have an effect system.

C#

C++

Go

Go is a programming language developed at Google. Although Go is statically
typed it has failed to integrate most modern advances in programming language
work since the 1970s and instead chooses a seemingly regressive design. Most
notably it lacks any notion of generics and polymorphism is either achieved by
manual code duplication or unsafe coercions.
Main difference: Go is a language designed around the idea that language
design has not advanced since 1970, while Haskell incorporates many ideas from
modern research.
Go’s main implementation is go.
Go is a statically typed language.
Go has no safe polymorphism.

366

Go is statically compiled with a custom toolchain.
Go does not have an effect system.

Scala

Javascript

JavaScript is a high-level, dynamic, untyped, and interpreted programming
language that was ubiquitous in web development during the 90s and 00s.
Javascript is most kindly described as a language that “just happened” and
an enduring testament to human capacity to route around problems.
Main difference: Like many web technologies Javascript “just happened” and
it’s design was dominated by economic factors. Haskell was designed with some
insight into the end result.
Javascripts implementations include NodeJS, V8 and spidermoneky.
Javascript is a unityped language.
Javascript is interpreted, tracing JIT specialization is common.
Javascript allows polymorphism by means of unityping.
Javascript internally refers to runtime value tags as types, which differs from the
Haskell notion of types.
The majority of Javascript implementations are garbage collected.

Code

• 01-basics/
• 02-monads/
• 03-monad-transformers/
• 04-extensions/
• 05-laziness/
• 06-prelude/
• 07-text-bytestring/
• 08-applicatives/
• 09-errors/
• 10-advanced-monads/
• 11-quantification/
• 12-gadts/
• 13-lambda-calculus/
• 14-interpreters/
• 15-testing/
• 16-type-families/

367

https://github.com/sdiehl/wiwinwlh/tree/master/src/01-basics/
https://github.com/sdiehl/wiwinwlh/tree/master/src/02-monads/
https://github.com/sdiehl/wiwinwlh/tree/master/src/03-monad-transformers/
https://github.com/sdiehl/wiwinwlh/tree/master/src/04-extensions/
https://github.com/sdiehl/wiwinwlh/tree/master/src/05-laziness/
https://github.com/sdiehl/wiwinwlh/tree/master/src/06-prelude/
https://github.com/sdiehl/wiwinwlh/tree/master/src/07-text-bytestring/
https://github.com/sdiehl/wiwinwlh/tree/master/src/08-applicatives/
https://github.com/sdiehl/wiwinwlh/tree/master/src/09-errors/
https://github.com/sdiehl/wiwinwlh/tree/master/src/10-advanced-monads/
https://github.com/sdiehl/wiwinwlh/tree/master/src/11-quantification/
https://github.com/sdiehl/wiwinwlh/tree/master/src/12-gadts/
https://github.com/sdiehl/wiwinwlh/tree/master/src/13-lambda-calculus/
https://github.com/sdiehl/wiwinwlh/tree/master/src/14-interpreters/
https://github.com/sdiehl/wiwinwlh/tree/master/src/15-testing/
https://github.com/sdiehl/wiwinwlh/tree/master/src/16-type-families/

• 17-promotion/
• 18-generics/
• 19-numbers/
• 20-data-structures/
• 21-ffi/
• 22-concurrency/
• 23-graphics/
• 24-parsing/
• 25-streaming/
• 26-data-formats/
• 27-web/
• 28-databases/
• 29-ghc/
• 30-languages/
• 31-template-haskell/
• 33-categories/

368

https://github.com/sdiehl/wiwinwlh/tree/master/src/17-promotion/
https://github.com/sdiehl/wiwinwlh/tree/master/src/18-generics/
https://github.com/sdiehl/wiwinwlh/tree/master/src/19-numbers/
https://github.com/sdiehl/wiwinwlh/tree/master/src/20-data-structures/
https://github.com/sdiehl/wiwinwlh/tree/master/src/21-ffi/
https://github.com/sdiehl/wiwinwlh/tree/master/src/22-concurrency/
https://github.com/sdiehl/wiwinwlh/tree/master/src/23-graphics/
https://github.com/sdiehl/wiwinwlh/tree/master/src/24-parsing/
https://github.com/sdiehl/wiwinwlh/tree/master/src/25-streaming/
https://github.com/sdiehl/wiwinwlh/tree/master/src/26-data-formats/
https://github.com/sdiehl/wiwinwlh/tree/master/src/27-web/
https://github.com/sdiehl/wiwinwlh/tree/master/src/28-databases/
https://github.com/sdiehl/wiwinwlh/tree/master/src/29-ghc/
https://github.com/sdiehl/wiwinwlh/tree/master/src/30-languages/
https://github.com/sdiehl/wiwinwlh/tree/master/src/31-template-haskell/
https://github.com/sdiehl/wiwinwlh/tree/master/src/33-categories/

	Basics
	Cabal
	Stack
	Flags
	Hackage
	GHCi
	Editor Integration
	Bottoms
	Exhaustiveness
	Debugger
	Stacktraces
	Trace
	Type Holes
	Deferred Type Errors
	ghcid
	Haddock

	Monads
	Eightfold Path to Monad Satori
	Monadic Myths
	Laws
	Do Notation
	Maybe
	List
	IO
	Whats the point?
	Reader Monad
	Writer Monad
	State Monad
	Monad Tutorials

	Monad Transformers
	mtl / transformers
	Transformers
	Basics
	ReaderT
	Newtype Deriving
	Efficiency
	Monad Morphisms

	Language Extensions
	The Benign
	The Dangerous
	Type Inference
	Monomorphism Restriction
	Extended Defaulting
	Safe Haskell
	Partial Type Signatures
	Recursive Do
	Applicative Do
	Pattern Guards
	ViewPatterns
	TupleSections
	MultiWayIf
	EmptyCase
	LambdaCase
	NumDecimals
	PackageImports
	RecordWildCards
	NamedFieldPuns
	PatternSynonyms
	DeriveTraversable
	DeriveFoldable
	DeriveFunctor
	DeriveGeneric
	DeriveAnyClass
	StaticPointers
	DuplicateRecordFields
	OverloadedLabels
	Cpp
	Historical Extensions

	Type Classes
	Minimal Annotations
	FlexibleInstances
	FlexibleContexts
	OverlappingInstances
	IncoherentInstances
	TypeSynonymInstances

	Laziness
	Strictness
	Seq and WHNF
	Strictness Annotations
	Strict Haskell
	Deepseq
	Irrefutable Patterns

	Prelude
	What to Avoid?
	What Should be in Base
	Custom Preludes
	Partial Functions
	Safe
	Boolean Blindness
	Foldable / Traversable
	Corecursion
	split
	monad-loops

	Strings
	String
	Import Conventions
	Text
	Text.Builder
	ByteString
	Printf
	Overloaded Lists
	String Conversions

	Applicatives
	Alternative
	Arrows
	Bifunctors
	Polyvariadic Functions

	Error Handling
	Control.Exception
	Exceptions
	ExceptT
	spoon

	Advanced Monads
	Function Monad
	RWS Monad
	Cont
	MonadPlus
	MonadFix
	ST Monad
	Free Monads
	Indexed Monads
	lifted-base

	Quantification
	Universal Quantification
	Free theorems
	Type Systems
	Rank-N Types
	Existential Quantification
	Impredicative Types
	Scoped Type Variables

	GADTs
	GADTs
	Kind Signatures
	Void
	Phantom Types
	Typelevel Operations

	Interpreters
	HOAS
	PHOAS
	Final Interpreters
	Finally Tagless
	Datatypes
	F-Algebras
	recursion-schemes
	Hint and Mueval

	Testing
	QuickCheck
	SmallCheck
	QuickSpec
	Criterion
	Tasty
	silently

	Type Families
	MultiParam Typeclasses
	Type Families
	Injectivity
	Roles
	Monotraversable
	NonEmpty
	Overloaded Lists
	Manual Proofs
	Constraint Kinds
	TypeFamilyDependencies

	Promotion
	Higher Kinded Types
	Kind Polymorphism
	Data Kinds
	Size-Indexed Vectors
	Typelevel Numbers
	Typelevel Strings
	Custom Errors
	Type Equality
	Proxies
	Promoted Syntax
	Singleton Types
	Closed Type Families
	Kind Indexed Type Families
	Promoted Symbols
	HLists
	Typelevel Dictionaries
	Advanced Proofs
	Liquid Haskell

	Generics
	Typeable
	Dynamic
	Data
	Syb
	Generic
	Generic Deriving
	Uniplate

	Mathematics
	Numeric Tower
	Integer
	Complex
	Scientific
	Statistics
	Constructive Reals
	SAT Solvers
	SMT Solvers

	Data Structures
	Map
	Tree
	Set
	Vector
	Mutable Vectors
	Unordered-Containers
	Hashtables
	Graphs
	Graph Theory
	DList
	Sequence

	FFI
	Pure Functions
	Storable Arrays
	Function Pointers

	Concurrency
	Sparks
	Threadscope
	Strategies
	STM
	Monad Par
	async

	Graphics
	Diagrams

	Parsing
	Parsec
	Custom Lexer
	Simple Parsing
	Generic Parsing
	Attoparsec
	Optparse Applicative
	Happy & Alex
	Configurator

	Streaming
	Lazy IO
	Pipes
	Safe Pipes
	Conduits

	Data Formats
	JSON
	Yaml
	CSV

	Network & Web Programming
	HTTP
	Blaze
	Warp
	Scotty
	Hastache

	Databases
	Postgres
	Redis
	Acid State

	GHC
	Block Diagram
	Core
	Inliner
	Dictionaries
	Specialization
	Static Compilation
	Unboxed Types
	IO/ST
	ghc-heap-view
	STG
	Worker/Wrapper
	Z-Encoding
	Cmm
	Optimization Hacks
	Interface Files

	Profiling
	EKG
	RTS Profiling

	Languages
	unbound
	unbound-generics
	llvm-general
	pretty
	wl-pprint-text
	Haskeline
	Repline

	Template Haskell
	Perils of Metaprogramming
	Quasiquotation
	language-c-quote
	Template Haskell
	Antiquotation
	Templated Type Families
	Templated Type Classes
	Multiline Strings
	git-embed

	Categories
	Algebraic Relations
	Categories
	Isomorphisms
	Duality
	Functors
	Natural Transformations
	Yoneda Lemma
	Kleisli Category
	Resources

	Other Languages
	Haskell
	OCaml
	Standard ML
	Agda
	Coq
	Idris
	Rust
	Purescript
	Elm
	Python
	R
	Julia
	Erlang
	Clojure
	Swift
	C#
	C++
	Go
	Scala
	Javascript

	Code

